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Abstract

The objective of this study is to develop a punctuality model for both
diagnosis and prognosis. This necessarily implies a better understanding of
the weather impact on air traffic delays and punctualities and a classification
of significant actuating variables.

Taking Frankfurt Airport as study airport, it is exemplarily shown, how
much of the variability of daily punctuality can be explained through a math-
ematical model. For this purpose, a hybrid model, based on multivariate
linear regression, was developed via several expansion stages. It addition-
ally comprises an autoregressive term. A complex regression tree correction
algorithm cares for model adjustment in the low punctuality domain.

The model introduced in this work is a continuation of the work previ-
ously done by Spehr (2003). Suggestions for improvement were seized and
developed further along with new ideas. In that respect it is analysed, which
model enhancements are meaningful and how they are reflected in improve-
ments of model quality. It is shown that by means of enhanced punctuality
models, anR2 exceeding 0.6 can be realised. This is a significant improvement
compared to model results obtained by Spehr, where days with e.g. strikes
or system failures were excluded from the analyses beforehand. Moreover,
the weather impact on punctuality is, in the present study, quantified using
a new method. Previous approaches often drew upon an interpretation of
delay codes. By means of the punctuality models at hand, more than 45% of
the variability in daily punctuality can be explained through local weather.
Thus, the hypothesised strong weather impact on air traffic delays is to a
high degree verified. In that respect, weather acts as a governing descriptor
regarding the generation and development of delays and, consequently, not
all single processes need to be modelled individually.

In a follow-up study, the developed punctuality models were analysed fo-
cusing on their potential for a punctuality forecast. The option of true punc-
tuality forecasting on a daily basis for one or several days into the future,
with the aid of weather- and traffic forecasts, is a valuable source of infor-
mation for airport divisions planning in the medium term. It is shown that
good results can be achieved using punctuality models based on predictable
input variables, only. By means of independent data, an R2 of almost 0.6 was
realised. Based on these results, the operational application of a punctuality
forecast model seems not only possible but also reasonable. Therefore, an
optimisation of the forecast of significant predictor variables should be aimed
for in follow-up studies.
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Zusammenfassung

Ziel dieser Arbeit ist die Entwicklung eines Pünktlichkeitsmodells sowohl
für die Diagnose als auch die Vorhersage. Dies impliziert ein besseres Ver-
ständnis der Größe des Wettereinflusses auf die Verspätungen und die Pünkt-
lichkeit im Flugverkehr, sowie eine Benennung und Einordnung der signifi-
kanten Einflussgrößen.

Anhand des Flughafens Frankfurt wird exemplarisch gezeigt, welcher Va-
riabilitätsanteil der Tagespünktlichkeit mit einem mathematischen Modell
erklärt werden kann. Dazu wurde in mehreren Ausbaustufen ein hybrides Mo-
dell auf Basis von multivariater linearer Regression entwickelt. Zur zusätzli-
chen Verbesserung wurden Zeitreiheninformationen ausgewertet, die in einem
autoregressiven Term im Pünktlichkeitsmodell Anwendung finden. Ein kom-
plexer Regressionsbaum-Korrekturalgorithmus sorgt für Modellanpassungen
im Niedrigpünktlichkeitsbereich.

Die in dieser Arbeit vorgestellten Modelle sind eine Fortführung der Ar-
beit von Spehr (2003). Verbesserungsvorschläge werden aufgegriffen und
mit neuen Ideen weiterentwickelt. In diesem Zusammenhang wird untersucht,
welche Modellerweiterungen sinnvoll sind und wie sich diese in einer Verbes-
serung der Modellgüte niederschlagen. Es wird gezeigt, dass mit Hilfe erwei-
terter Pünktlichkeitsmodelle ein R2 von mehr als 0.6 erreicht werden kann.
Dies ist eine deutliche Verbesserung gegenüber den Modellergebnissen von
Spehr, bei denen z.B. durch Streik oder Systemausfälle vorbelastete Tage
für die Untersuchungen ausgeschlossen wurden. Darüber hinaus wird in der
vorliegenden Arbeit der Wettereinfluss auf die Pünktlichkeit auf eine neue Art
und Weise quantifiziert. Bisherige Ansätze stützten sich in der Regel auf die
Auswertung von Delay-Codes. Mit Hilfe der vorliegenden Pünktlichkeitsmo-
delle kann mehr als 45% der Variabilität der Tagespünktlichkeit mit lokalem
Wetter erklärt werden. Damit wird der angenommene starke Wettereinfluss
auf Verspätungen im Flugverkehr bestätigt. Wetter zeigt sich in diesem Zu-
sammenhang bei der Generierung und Entwicklung von Verspätungen als
übergeordneter Deskriptor, wodurch auf eine individuelle Modellierung von
Einzelprozessen verzichtet werden kann.

In einer sich anschließenden Analyse werden die entwickelten Pünktlich-
keitsmodelle auf ihr Potential zur Pünktlichkeitsvorhersage hin untersucht.
Die Möglichkeit einer echten Pünktlichkeitsvorhersage auf Tagesbasis für
einen oder gar mehrere Tage in der Zukunft, unter Zuhilfenahme von Wetter-
und Verkehrsprognosen, ist eine wertvolle Option für mittelfristig planende
Flughafenabteilungen. Es wird gezeigt, dass Pünktlichkeitsmodelle auf Basis
prognostizierbarer Prädiktoren gute Resultate erzielen. Anhand unabhängi-
ger Daten wurde ein R2 von nahezu 0.6 erreicht. Auf Grundlage dieser Er-
gebnisse scheint der operative Einsatz eines Pünktlichkeitsvorhersagemodells
nicht nur möglich sondern auch sinnvoll. In Anschlussstudien sollte daher die
Optimierung der Vorhersage signifikanter Prädiktoren anvisiert werden.

Schlagworte: Pünktlichkeit, Flugverspätungen, Modellierung





Contents

Contents i

List of Figures v

List of Tables vii

Abbreviations ix

1 Introduction 1
1.1 Definition of Delay Measures . . . . . . . . . . . . . . . . . . . 3
1.2 Low Punctuality: A Typical Example . . . . . . . . . . . . . . 6
1.3 Review of Previous Studies on Air Traffic Delay and Delay

Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . 15

2 Methodology and Data 19
2.1 The Study Airport Frankfurt . . . . . . . . . . . . . . . . . . 19

2.1.1 General Description . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Traffic and Passenger Volume at Frankfurt Airport . . 20
2.1.3 Operational Procedures . . . . . . . . . . . . . . . . . 23
2.1.4 Punctuality at Frankfurt Airport . . . . . . . . . . . . 24
2.1.5 Weather at Frankfurt Airport . . . . . . . . . . . . . . 26

2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 Punctuality and Operational Data . . . . . . . . . . . 30
2.2.2 SYNOP Weather Data . . . . . . . . . . . . . . . . . . 32
2.2.3 AMDAR Wind Data . . . . . . . . . . . . . . . . . . . 37

2.2.3.1 AMDAR Data versus Daily Logs: A short
Analysis . . . . . . . . . . . . . . . . . . . . . 38

2.3 Theoretical Approach . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 Multivariate Linear Regression . . . . . . . . . . . . . . 40
2.3.2 Regression Trees . . . . . . . . . . . . . . . . . . . . . 42
2.3.3 AR-Processes . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.4 Model Quality Measures . . . . . . . . . . . . . . . . . 45
2.3.5 Hard- and Software Environment for Implementation . 46

i



ii CONTENTS

3 Results 49

3.1 Preliminary Investigations . . . . . . . . . . . . . . . . . . . . 49

3.2 Modelling Results . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Model 1 – Rudimentary Baseline Model . . . . . . . . 54

3.2.2 Model 2 – Variable Transformations . . . . . . . . . . . 56

3.2.3 Model 3 – Runway-Related Wind Components . . . . . 59

3.2.4 Model 4 – Enhanced Boolean Predictor Variables . . . 60

3.2.5 Model 5 – Upper Level Wind . . . . . . . . . . . . . . 62

3.2.6 Model 6 – Traffic . . . . . . . . . . . . . . . . . . . . . 66

3.2.7 Model 7 – Weather Related Predictors . . . . . . . . . 67

3.2.8 Model 8 – Non-Weather Related Predictors . . . . . . . 69

3.2.9 Model 9 – Higher Resolution Weather Variables . . . . 70

3.2.10 Model 10 – Breakdown into Summer and Winter Season 72

3.2.11 Model 11 – AR(1) Extension . . . . . . . . . . . . . . . 75

3.2.12 Model 12 – Regression Trees . . . . . . . . . . . . . . . 76

3.2.12.1 A Pure Regression Tree Model . . . . . . . . 76

3.2.12.2 A Hybrid Model Approach . . . . . . . . . . . 78

3.2.13 Model 13 – The Final Hybrid Model . . . . . . . . . . 82

3.2.13.1 Modifications of Model 13 . . . . . . . . . . . 87

3.2.13.2 The Role of Weather . . . . . . . . . . . . . . 90

3.3 Punctuality Forecast . . . . . . . . . . . . . . . . . . . . . . . 98

4 Conclusions, Limitations and Outlook 107

4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . 110

A Arrival Rate Matrix 113

B Model Background Information 115

B.1 Regression Trees – 24h-Data . . . . . . . . . . . . . . . . . . . 115

B.2 Regression Trees – 6h-Data . . . . . . . . . . . . . . . . . . . 116

B.3 Summary of Model Quality Criteria . . . . . . . . . . . . . . . 117

C Forecast Model 119

C.1 Monthly Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

D SYNOP Format 127

D.1 ww-Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

D.2 CL-Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

D.3 E-Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

E Standard IATA Delay Codes 131



CONTENTS iii

Bibliography 135

Acknowledgements 143

Curriculum Vitae 145



iv



List of Figures

1.1 On-time performance at European airports in 2008 . . . . . . 2

1.2 On-time performance in Europe between 2001 and 2008 . . . . 3

1.3 On-Time Navigator, 6 October 2006 . . . . . . . . . . . . . . . 7

1.4 Current and integral punctuality, 6 October 2006 . . . . . . . 8

2.1 Frankfurt Airport . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Declared capacity at Frankfurt Airport . . . . . . . . . . . . . 20

2.3 Actual traffic and passenger volume at Frankfurt Airport . . . 21

2.4 Scheduled traffic at Frankfurt Airport . . . . . . . . . . . . . . 21

2.5 Arrivals and departures at Frankfurt Airport . . . . . . . . . . 22

2.6 Punctuality at Frankfurt Airport . . . . . . . . . . . . . . . . 24

2.7 Autocorrelation of TOTP . . . . . . . . . . . . . . . . . . . . 25

2.8 Daily log Frankfurt Airport . . . . . . . . . . . . . . . . . . . 30

2.9 Example of a regression tree . . . . . . . . . . . . . . . . . . . 43

3.1 Prevalent weather on low punctuality days . . . . . . . . . . . 52

3.2 Process flow for model calibration and validation. . . . . . . . 53

3.3 Time series of TOTP and TOTPF, Model 1 . . . . . . . . . . 56

3.4 Scatterplot of TOTP and TOTPF, Model 1 . . . . . . . . . . 57

3.5 Scatterplot of TOTP and TOTPM/TOTPF, regression tree
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6 Time series of TOTP and TOTPF, regression tree model . . . 78

3.7 Time series of TOTP and TOTPF, Model 12a . . . . . . . . . 79

3.8 Scatterplot of TOTP and TOTPF, Model 12a . . . . . . . . . 80

3.9 Flow diagramm of the final hybrid punctuality model . . . . . 83

3.10 Time series of TOTP and TOTPF, Model 13 . . . . . . . . . . 85

3.11 Scatterplot of TOTP and TOTPF, Model 13 . . . . . . . . . . 85

3.12 Visualisation of the predictors correlation matrix, Model 13 . . 86

3.13 Residuals vs. modelled TOTP, Model 13 . . . . . . . . . . . . 87

3.14 Stability of predictor coefficients, Model 13 . . . . . . . . . . . 88

3.15 Visualisation of the predictors correlation matrix, Model 13L . 91

3.16 Stability of predictor coefficients, Model 13L . . . . . . . . . . 92

v



vi LIST OF FIGURES

3.17 Time series of TOTP and TOTPF, high resolution Forecast
Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.18 Scatterplot of TOTP and TOTPF, high resolution Forecast
Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.19 Visualisation of the predictors correlation matrix, high resolu-
tion Forecast Model 2 . . . . . . . . . . . . . . . . . . . . . . . 104

3.20 Stability of predictor coefficients, high resolution Forecast Mod-
el 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.21 Residuals vs. modelled TOTP, high resolution Forecast Model 2105

A.1 Arrival Rate Matrix . . . . . . . . . . . . . . . . . . . . . . . . 113

C.1 Time series of TOTP and TOTPF, January 2006, Forecast
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

C.2 Time series of TOTP and TOTPF, February 2006, Forecast
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

C.3 Time series of TOTP and TOTPF, March 2006, Forecast Model120
C.4 Time series of TOTP and TOTPF, April 2006, Forecast Model 121
C.5 Time series of TOTP and TOTPF, May 2006, Forecast Model 121
C.6 Time series of TOTP and TOTPF, June 2006, Forecast Model 122
C.7 Time series of TOTP and TOTPF, July 2006, Forecast Model 122
C.8 Time series of TOTP and TOTPF, August 2006, Forecast Model123
C.9 Time series of TOTP and TOTPF, September 2006, Forecast

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
C.10 Time series of TOTP and TOTPF, October 2006, Forecast

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
C.11 Time series of TOTP and TOTPF, November 2006, Forecast

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
C.12 Time series of TOTP and TOTPF, December 2006, Forecast

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



List of Tables

2.1 Definition of CAT stages . . . . . . . . . . . . . . . . . . . . . 23
2.2 Annual statistics of TOTP . . . . . . . . . . . . . . . . . . . . 25
2.3 Weather at Frankfurt Airport (1) . . . . . . . . . . . . . . . . 26
2.4 Weather at Frankfurt Airport (2) . . . . . . . . . . . . . . . . 27
2.5 Raw weather data . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Final set of weather variables . . . . . . . . . . . . . . . . . . 35
2.7 Alternative set of wind variables . . . . . . . . . . . . . . . . . 36
2.8 Final set of upper level wind variables . . . . . . . . . . . . . . 38

3.1 Weather on low punctuality days . . . . . . . . . . . . . . . . 50
3.2 Set of predictors, Model 1 . . . . . . . . . . . . . . . . . . . . 55
3.3 Diagnostic model results, Model 1 . . . . . . . . . . . . . . . . 55
3.4 Quality criteria, Model 1 . . . . . . . . . . . . . . . . . . . . . 56
3.5 Nonlinear transformations . . . . . . . . . . . . . . . . . . . . 57
3.6 Set of predictors, Model 2 . . . . . . . . . . . . . . . . . . . . 58
3.7 Diagnostic model results, Model 2 . . . . . . . . . . . . . . . . 59
3.8 Quality criteria, Model 2 . . . . . . . . . . . . . . . . . . . . . 59
3.9 Set of predictors, Model 3 . . . . . . . . . . . . . . . . . . . . 60
3.10 Diagnostic model results, Model 3 . . . . . . . . . . . . . . . . 60
3.11 Quality criteria, Model 3 . . . . . . . . . . . . . . . . . . . . . 61
3.12 Set of predictors, Model 4 . . . . . . . . . . . . . . . . . . . . 61
3.13 Diagnostic model results, Model 4 . . . . . . . . . . . . . . . . 62
3.14 Quality criteria, Model 4 . . . . . . . . . . . . . . . . . . . . . 62
3.15 First set of predictors, Model 5 . . . . . . . . . . . . . . . . . 63
3.16 Second set of predictors, Model 5 . . . . . . . . . . . . . . . . 63
3.17 Diagnostic model results 1, Model 5 . . . . . . . . . . . . . . . 64
3.18 Diagnostic model results 2, Model 5 . . . . . . . . . . . . . . . 64
3.19 Quality criteria 1, Model 5 . . . . . . . . . . . . . . . . . . . . 65
3.20 Quality criteria 2, Model 5 . . . . . . . . . . . . . . . . . . . . 65
3.21 Set of predictors, Model 6 . . . . . . . . . . . . . . . . . . . . 66
3.22 Diagnostic model results, Model 6 . . . . . . . . . . . . . . . . 66
3.23 Quality criteria, Model 6 . . . . . . . . . . . . . . . . . . . . . 67
3.24 Set of predictors, Model 7 . . . . . . . . . . . . . . . . . . . . 67

vii



viii LIST OF TABLES

3.25 Diagnostic model results, Model 7 . . . . . . . . . . . . . . . . 68
3.26 Quality criteria, Model 7 . . . . . . . . . . . . . . . . . . . . . 68
3.27 Set of predictors, Model 8 . . . . . . . . . . . . . . . . . . . . 69
3.28 Diagnostic model results, Model 8 . . . . . . . . . . . . . . . . 69
3.29 Quality criteria, Model 8 . . . . . . . . . . . . . . . . . . . . . 70
3.30 Set of predictors, Model 9 . . . . . . . . . . . . . . . . . . . . 70
3.31 Diagnostic model results, Model 9 . . . . . . . . . . . . . . . . 71
3.32 Quality criteria, Model 9 . . . . . . . . . . . . . . . . . . . . . 71
3.33 Set of predictors, summer, Model 10 . . . . . . . . . . . . . . 72
3.34 Set of predictors, winter, Model 10 . . . . . . . . . . . . . . . 72
3.35 Diagnostic model results, summer, Model 10 . . . . . . . . . . 73
3.36 Diagnostic model results, winter, Model 10 . . . . . . . . . . . 73
3.37 Quality criteria, Model 10 . . . . . . . . . . . . . . . . . . . . 74
3.38 Diagnostic model results, Model 11 . . . . . . . . . . . . . . . 75
3.39 Quality criteria, Model 11 . . . . . . . . . . . . . . . . . . . . 76
3.40 Quality criteria for a pure regression tree model . . . . . . . . 77
3.41 Quality criteria, Model 12a . . . . . . . . . . . . . . . . . . . . 81
3.42 Quality criteria for models with reduced numbers of predictors 82
3.43 Set of predictors, Model 13 . . . . . . . . . . . . . . . . . . . . 84
3.44 Quality criteria, Model 13 . . . . . . . . . . . . . . . . . . . . 84
3.45 Quality criteria for models with different validation periods . . 89
3.46 Quality criteria for models with reduced calibration periods . . 89
3.47 Set of predictors, Model 13L . . . . . . . . . . . . . . . . . . . 90
3.48 Quality criteria, Model 13L . . . . . . . . . . . . . . . . . . . 91
3.49 Criteria for interpretation of predictor relevance, Model 13L . 93
3.50 Criteria for interpretation of predictor relevance, Model 13 . . 94
3.51 Set of predictors, Model 13wL . . . . . . . . . . . . . . . . . . 96
3.52 Set of predictors, Model 13w . . . . . . . . . . . . . . . . . . . 96
3.53 Quality criteria, Model 13wL . . . . . . . . . . . . . . . . . . . 97
3.54 Quality criteria, Model 13w . . . . . . . . . . . . . . . . . . . 97
3.55 Set of predictors, low resolution Forecast Model 1 . . . . . . . 99
3.56 Quality criteria, low resolution Forecast Model 1 . . . . . . . . 99
3.57 Set of predictors, low resolution Forecast Model 2 . . . . . . . 100
3.58 Quality criteria, low resolution Forecast Model 2 . . . . . . . . 100
3.59 Set of predictors, high resolution Forecast Model 1 . . . . . . . 101
3.60 Quality criteria, high resolution Forecast Model 1 . . . . . . . 101
3.61 Set of predictors, high resolution Forecast Model 2 . . . . . . . 102
3.62 Quality criteria, high resolution Forecast Model 2 . . . . . . . 102

B.1 Special Regression Trees, 24h-Data . . . . . . . . . . . . . . . 115
B.2 Special Regression Trees, 6h-Data . . . . . . . . . . . . . . . . 116
B.3 Quality criteria for all model stages . . . . . . . . . . . . . . . 117



Abbreviations

ACARS Aircraft Communications Addressing and Reporting
System

AMDAR Aircraft Meteorological Data Relay
AR Auto Regressive
ATC Air Traffic Control
ATFM Air Traffic Flow Management
ATFCM Air Traffic Flow and Capacity Management
CAT Approach Category
CFMU Central Flow Management Unit
CODA Central Office for Delay Analysis
CPS Capacity Prognosis Schiphol
DH Decision Height
DFS Deutsche Flugsicherung
DLH Deutsche Lufthansa
DWD Deutscher Wetterdienst
EDDF Frankfurt Airport (ICAO code)
FAA Federal Aviation Administration
FAR False Alarm Ratio
FFF Future for FRA
FL Flight Level
FRA Frankfurt Airport (IATA code)
FRAPORT Frankfurt Airport Company
GDP Ground Delay Program
IATA International Air Transport Association
ICAO International Civil Aviation Organisation
IFR Instrument Flight Rules
IMC Instrument Meteorological Conditions
INBFL Inbound Flight Movements
INBP Inbound Punctuality
KLM Koninklijke Luchtvaart Maatschappij (Royal Dutch

Airlines)
KNMI Koninklijk Nederlands Meteorologisch Instituut

(Royal Netherlands Meteorological Institute)
MIT Massachusetts Institute of Technology

ix



x ABBREVIATIONS

MLR Multivariate Linear Regression
MLRCL Multivariate Linear Regression Correction Limit
MOS Model Output Statistics
NAS National Airspace System
NWFM Numerical Weather Forecasting Model
NWP Numerical Weather Prediction
OLS Ordinary Least Squares
OTBFL Outbound Flight Movements
OTBP Outbound Punctuality
POD Probability Of Detection
PRS Parallel RWY System
RTCL Regression Tree Correction Limit
RVR Runway Visual Range
RWY Runway
SAS Scandinavian Airlines System
THR Total Hit Rate
TMA Terminal Manoeuvring Area
TOTFL Total Flight Movements
TOTP Total Punctuality
VHF Very High Frequency
VMC Visual Meteorological Conditions
WITI Weather Impacted Traffic Index
WMO World Meteorological Organization



Chapter 1

Introduction

”Air transport delays in Europe are a major concern for the in-
dustry and a relentless source of complaints from the passengers,
as often verified in the media. Not only is it a painful inconve-
nience for the actors, but delays also induce large costs, for the
airlines, their customers and the community as a whole.”

The above citation taken from ITA (2000) concisely describes the signifi-
cance of air transport delays as a key indicator for air traffic performance.
In that respect, delay, and strongly connected to it, punctuality as one of
its measures, is just one among many performance parameters for air trans-
portation. In the same breath, other factors such as capacity, safety, secu-
rity, cost-effectiveness, environmental sustainability, flexibility, predictability,
access and equity, participation and interoperability have to be considered
(EUROCONTROL, 2008).

Certainly, there is no other industry that is more sensitive to weather
than the aeronautical industry. ”In spite of our improved ability to observe
and forecast the weather to a greater degree of accuracy than ever before,
adverse meteorological conditions continue to severely impact the operational
safety and efficiency, as well as the system’s capacity.” This citation from
Sprinkle and Macleod (1991) – though published almost 20 years ago
– still reflects the current status of weather within the aviation industry.
Weather was and still is one of the root causes of schedule disruptions and air
traffic delays. However, delay and, consequently, a decrease in punctuality
does not only arise from weather. Other factors are e.g. high volume of
traffic, insufficient adoption of aviation infrastructure to enhanced safety and
security standards or just non-optimised ground operations. In a tightly
integrated air traffic system, these primary delays are multiplied and spread
in time and space. Exemplarily for 2008, Figure 1.1 gives an overview over
the on-time performance of the most important European airports. Displayed
is the fraction of flights being more than 15 minutes late (upper part of the
graph) or early (lower part of the graph). Looking at the upper chart, the

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: On-time performance at European airports in 2008 (EUROCONTROL,
2009b).

left bars show the fraction of late off-blocks (using the 15 minutes threshold)
at the various airports of origin by traffic inbound to the respective airport
of interest. The centre bars give the fraction of late arrivals at the airport
of interest, the right bars the fraction of late departures. Additionally, a
simple breakdown into four delay causes is given for departures: reactionary
delay, delay produced at local turnaround, ATFM delay produced at the
airport and ATFM delay produced en-route. The factor ”weather” is not
directly covered in the this course classification but it is hidden in the four
other factors. Apparently, the on-time performance as well as the impact of
imported delays and the translation of arrival into departure delays varies
among the displayed airports. The reasons for this are manifold and further
discussed in this work. Figure 1.2 shows the development of the average
on-time performance in Europe between 2002 and 2008 as defined above,
subdivided into arrivals and departures being more than 15 minutes late and
arrivals being more than 15 minutes early. Whereas early arrivals are at a
constant level of roughly 7%, the fraction of late departures and arrivals is
subject to variation over time at a level of roughly 20%.

For Frankfurt Airport, the airport of investigation within this study, the
distribution of delay causes for 2008 was such that, according to DFS (2008),
47% of all departure delays were attributed to airline internal reasons, fol-
lowed by 20% for airport reasons, 11% both for ATM and security, respec-
tively, and weather with 10%. At first glance, the relative importance of
weather seems rather low. It is, however, well known that airports operat-
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Figure 1.2: On-time performance in Europe between 2001 and 2008 (EUROCONTROL,
2009b).

ing close to their nominal capacity experience an amplifying effect on delays
trough adverse weather conditions at times of high work load – without
weather being officially allocated as the primary cause for the delays pro-
duced. One of the objectives of the present study hence is to take a closer
look at the weather impact on delay and punctuality.

Another major issue of delay is the corresponding costs. Air traffic delays
induce financial and economic consequences on airlines, on their clients and
on the community (ITA, 2000). Airlines suffer from additional costs on fleet
and are obliged to compensate passengers for their discomfort. SAS, for
example, estimates airline costs associated with one minute of delay to range
between $150 and $300 (Wu and Caves, 2003b). A better understanding of
delay – the governing processes and the complex interrelationships leading to
delay propagation and multiplication – is thus likely to generate significant
economic benefits through optimised, pro-active operations and adaptations,
as well as adequate and timely reactions.

1.1 Definition of Delay Measures

There are many different performance indicators used to compare airlines’
or airports’ performance regarding air traffic delays. The simplest is just
the recording of delay minutes produced within in a certain time frame with
regard to a reference, be it published schedules, estimated on-/off block times
or just average flight/movement times in a certain sector respectively from
reference point A to reference point B, or for a certain procedure.

An internationally accepted performance indicator for the operational
performance of airlines and airports is punctuality (EUROCONTROL,
2005), quantifying delays as compared to published schedules. Punctual-
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ity, is defined as the fraction of punctual flights to the total number of flights
within a certain time frame. In that regard, a flight is punctual if its delay
compared to schedule is no larger than 15 minutes. Generally, the reference
point for a flight is its on- and off-block time, respectively. Thus, for arrival
punctuality, scheduled on-block time is compared to actual on-block time.
For departure punctuality, the same accounts for off-block times. Often,
arrival and departure punctuality are referred to as inbound (INBP) and
outbound (OTBP) punctuality. Total punctuality is simply the fraction of
all flights being punctual, be it arrivals or departures. For punctuality mod-
elling in the present work, the focus is on total daily punctuality (TOTP)
which is defined accordingly as:

TOTP =
daily punctual flights

total daily flight movements
(1.1)

TOTP thus ranges between 0 and 1. Alternatively, it is sometimes given in
percent. The definition of punctuality has clear advantages over other de-
lay performance indicators, but also drawbacks not to be dismissed. Using
the 15 minutes envelope, small deviations from a schedule are not accounted
for. The reasoning here is that in air traffic small unpunctualities are gener-
ally accepted, still making smooth operations possible. Also, as there exists
no international definition on delay reporting, but only a set of conventions
(Theusner and Röhner, 2008), some airlines/airports measure delays at
different time thresholds (Guest, 2007), thus making cross-comparisons dif-
ficult. However, delay is generally measured at least from 15 minutes upward,
again speaking for the use of punctuality as delay measure for comparisons.
With regard to large delays, punctuality is an unbiased delay measure and
not over-sensitive to extensively delayed flights, which do not reflect the delay
charging for the majority of flights (see also Spehr, 2003).

Focusing on drawbacks, on-/off-block references are at least to be dis-
cussed. For airport purposes, it might be appropriate to use this reference
as delays resulting from e.g. taxi-out hold-up, remote de-icing queues or de-
parture queues at runway heads are not accounted for and do not show up
in the performance statistics. From an airline or passenger viewpoint, on the
other hand, it is not only important that aircraft go off-block on time, but
also that they are punctual at their destination. Any delay produced after
gate departure is thus potentially critical.

Moreover, as punctuality is defined with published schedules as a refer-
ence, it is only to a limited amount appropriate for an evaluation of true
system performance as compared to optimum performance. Airlines tend to
apply schedule padding, especially at peak times1, when there are systematic

1For further information on schedule padding and resulting problems at peak times
please refer to Frank et al. (2005)
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deviations of actual block times2 from scheduled block times to compensate
for these systematic delays and to reduce their knock-on effects. Thus, flight
schedules are adapted using schedule buffers, i.e. extra time to absorb arrival
delays, unexpected departure delays due to ground handling disruptions and
to accommodate inevitable time gaps in flight schedules, thus maintaining a
good on-time performance (EUROCONTROL, 2005).

If the focus is on an evaluation of true system performance, schedules
should thus be validated against optimal operations which assume ideal oper-
ational conditions. When interpreting punctuality over time, the application
of schedule buffers should be kept in mind. An improvement of punctuality
from one year to another might in that respect not come from improved or
more efficient operations but just from airlines using more conservative sched-
ule buffers (see also Theusner and Röhner, 2008). The interpretation of
punctuality trends is thus rather difficult. For a more advanced approach to
delay accounting see Thrasher and Weiss (2001).

Furthermore, not only the amount of delay produced is of interest, but
also its origin. Delays were thus classified according to a delay code system
introduced by IATA (see Appendix E), with roughly 80 different delay codes
covering all types of causes which may trigger a delay. Delay codes generally
have to be handled with care. Often, there is not a single reason for a
delay, but it is an integrated effect of many reasons. If a delay can then
only be assigned one delay code, the complexity of reasons is lost and the
reality is strongly simplified. In addition, throughout the daily rotation of
an aircraft with often several flight legs, the true reason of the original delay
might get lost. Imagine a flight waiting for crew, passengers and/or baggage
from another flight, which is delayed due to constricted operations through
heavy snowfall at its departure airport. This flight is likely to be assigned
a reactionary delay code (see Appendix E). However, the true reason for
this reactionary delay was adverse weather at another airport. This simple
example impressively shows that delay codes as used today can only to a
limited amount reflect the true complexity of delays, heavily depending on
if the focus is on original or immediate delay. In general, there is too much
weight on the downstream processes and an underestimation of upstream
influences (Niehues et al., 2001). Often, only the last and most obvious
disturbance or event in the process is reported as the cause of the delay.
Statistics presenting the amount of delay attributed to certain cause groups
of reasons (see e.g. EUROCONTROL, 2007, 2009a) can thus be strongly
biased.

Last but not least it should be emphasised that punctuality does not

2The block time is the time between off-block at the departure airport and on-block at
the destination airport. It includes the taxi-out time at the departure airport, the airborne
time and the taxi-in time at the arrival airport. Thus, it is often referred to as gate-to-gate
time.
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account for flights being early. Thus, such flights are not accounted for in
any bonus system. Likewise, punctuality does not allow for the negative
effects of flights being early, such as still occupied gates, short term gate
changes or built-up of holdings due to increased demand exceeding nominal
capacity, to name just a few.

1.2 Low Punctuality: A Typical Example

There are several causal reasons for low punctualities. Looking at Frankfurt
Airport, days exhibiting large delays are usually days with adverse weather
conditions. As an example for a typical low punctuality day, 6 October 2006
is chosen. Middle-Europe, at that time, was in a westerly to southwesterly
flow. Frontal systems connected to the storm system ex Isaac were to cross
Germany from West to East (Verein Berliner Wetterkarte, 2006a,b).
The storm system was supposed to intensify and the GermanWeather Service
(DWD) issued a wind warning for Frankfurt Airport, valid from 9 to 16 local
time.

Figure 1.3 gives background information on the development of traffic,
runway occupation and punctuality at Frankfurt Airport on 6 October 2006.
The data are taken from the FRAPORT On-Time Navigator system. Dis-
played is the number of arrivals, departures and total movements, against
the background of nominal arrival and departure capacity, which are both
variable over time (FHKD, 2008). Runway occupancy is shown in the lower
part of the graph. In the upper part, additional information is given on
punctuality and flight movements, subdivided into total figures and figures
for day- and nighttime. More detailed information on the development of
arrival, departure and total punctuality is given in Figure 1.4.

Punctuality graphs in both figures indicate that departure operations
were rather smooth until shortly after 7 hours local time. Arrivals, on the
contrary, experienced low punctualities around 50% already at that early
time of day. With increasing traffic during the first arrival bank, holdings
were built up due to high winds and, consequently, reduced capacity through
conservative approach staggering. The German ATC (DFS) had to limit
arrivals to below 40 per hour in the morning hours. This is, though not
significantly below nominal capacity (see Section 2.1.1), a crucial capacity
cut during the time-critical first arrival push.

After eight o’clock, arrival punctuality dropped dramatically to values be-
tween 10 and 20% and never recovered from that level before the late evening
hours. A significant amount of this delay was produced in the Frankfurt Ter-
minal Manoeuvring Area (TMA). As a consequence of low arrival punctuality,
also departure punctuality dropped significantly. From around nine o’clock,
values were in the range of 20 to 30% and thus only slightly better than the
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Figure 1.3: Traffic (solid lines), runway occupation (at the bottom of the graph) and
punctuality (dashed thin lines) at Frankfurt Airport on 6 October 2006. Arrival/departure
figures are given in red/blue and figures referring to total movements are given in black.
Thick dashed lines indicate the current nominal capacity.

arrival figures.

From 9:30 local time, holdings could successively be reduced again. At
9:55 local time, the DWD cancelled the wind warning for Frankfurt Airport.
However, up to this point, schedules had already been disturbed to a degree
not allowing for a recovery to normal operations for the rest of the day. This
is remarkable, since from afternoon hours, DFS could turn back to normal
operations with unconstrained arrival capacity.

Analyses of prevalent weather at Frankfurt Airport revealed that wind
speeds, both upper level and surface, were high on 6 October, but not excep-
tionally high. Runways could continuously be used for operations without
cross- or tailwind-components exceeding critical thresholds, thus implying
partial or total runway closures. Still, the local wind conditions were non-
optimal at a critical time, thus at least triggering the successive built-up of
delays. The weather impact on that day was, however, not limited to the
Frankfurt area. Quite the reverse, weather had an impact on larger regions
in Europe. From 11 local time, a significant fraction of arrivals at Frank-
furt Airport was delayed due to en-route regulations through the CFMU.
These prevented operations from recovery when local conditions would have
allowed for it. At the end of that respective day, average arrival punctu-
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Figure 1.4: Current (solid lines) and integral (dashed lines, for the current day up to
the time of reading) punctuality at Frankfurt Airport on 6 October 2006, subdivided into
arrival, departure and total punctuality.

ality at Frankfurt Airport was at 24.4%. Departure punctuality at 36.5%
was a little higher, leading to a total punctuality of 30.5% for 6 October.
Altogether, 1413 movements were operated, 30 flights were canceled.

This example impressively shows how delays are easily built up at an
airport with tight schedules and operating at its nominal capacity. The
role of weather in that process is complex and adverse weather conditions,
both local and outside the airport TMA, are likely to have a large effect
on operations and, consequently, punctuality. An analysis of the size of the
impact is within the scope of this study.

1.3 Review of Previous Studies on Air Traffic

Delay and Delay Modelling

Modelling of air traffic delay is a rather new area of research. The background
of studies and initiatives is manifold, but mostly economic reasons were and
are the drivers of research and development within this sector. Air traffic
delays are cost intensive and in times of growing traffic and limited capac-
ity, air traffic stakeholders are looking for ground-breaking ideas, supporting
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them in the understanding of the complex processes leading to delays. Along
with this gain of insight, resources are expected to be used more efficiently.
Even more, new strategies and products are likely to help in the monitoring
of processes and the evaluation and quantification of expected or realised
benefits.

In the recent years, several scientific studies on the weather impact on
air traffic were accomplished. Whereas most of these were performed in the
U.S., only a limited number of comparable studies is known for Europe. In
a pilot study on the weather impact on air traffic, Sasse (2000) and Sasse

and Hauf (2003) focused on a single weather impact factor and analysed
the effect of thunderstorms in the Frankfurt TMA on landing traffic. It was
found that average hourly arrival delay on thunderstorm days was up to 10
times higher than on optimum weather days. Arrival and departure delays
at Vienna International Airport in 2002 were analysed by Peer (2003) and
Peer et al. (2008) with special focus on the impact of different weather
factors. Snowfall and low visibility conditions proved to be the dominating
weather-related causes for delays during the winter season. In the summer
period, thunderstorms and strong precipitation rank first. Röhner (2004)
and Röhner andHauf (2008) concentrated on the impact of winter weather
on airport operations and punctualities. They found that at Frankfurt and
Munich Airports, most delays are produced when snowplough and runway
treatment operations are conducted. These necessitate the partial or total
closure of runways and taxiways, which produces large schedule disruptions,
especially during arrival or departure peaks. A cumulative effect comes from
aircraft de-icings, which are generally inevitable under these conditions. A
major conclusion from this study was that the size of the impact of winter
weather conditions on airport operations and, consequently, delays depends
heavily on the operational infrastructure at the airport of interest. This
implies that findings for one airport might not directly apply to other airports,
even when the same impact factors are considered.

The current best source of information on delays and delay causes in Eu-
rope, including analyses of weather and non-weather related sources, is EU-
ROCONTROL. A comprehensive introduction in the subject of delay, con-
sidering its definition, nature and categorisation, its causes, its measurement,
and its mitigation, is given by the manager of the EUROCONTROL Central
Office for Delay Analysis (CODA), Tim Guest (Guest, 2007). CODA as
an organisational unit of EUROCONTROL produces regular and ad-hoc air
traffic delay reports, available on their website (EUROCONTROL, 2009a).
Delays are analysed based on the IATA delay code system (see Appendix E).
Various statistic are compiled and provided on a monthly basis. These al-
low for a rudimentary overview over the weather-related share of air traffic
delay. In-depth analyses are, however, not published. The IATA delay code
system does not allow for a detailed breakdown into weather factors. Raw
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data are not provided for independent investigations. General analyses of
the performance of the European Air Traffic Management system are pre-
sented in EUROCONTROL’s annual Performance Review Reports (see e.g.
EUROCONTROL, 2009b). Aside from the delay and punctuality situa-
tion in Europe, these reports focus on the key performance areas of safety,
capacity, flight efficiency, cost-effectiveness and environmental impact. An-
other valuable source of information on delays and punctuality in Europe
and the determining factors is the Performance Review Commission of EU-
ROCONTROL. Within a report on punctuality drivers at major European
airports (EUROCONTROL, 2005), airport related details on the weather
impact on operations and, especially, on capacity and delay, are given. There
a three major factors for capacity reduction during bad weather identified:
strong winds/thunderstorms, reduced visibility and quality of meteorological
forecasts and their integration in the ATFM/ATC decision-making process.
In that respect, a major problem is that at certain airports a significant gap
between good and bad weather capacity exists. This gap depends strongly on
an airport’s assumed service quality criterion, the given airport layout and
its usage and the general preparedness for bad weather in terms of equipment
and processes.

Already in the nineties, studies on the weather impact on air traffic were
carried out in the U.S., where the weather regime is somewhat different from
that in Europe. On the one hand, weather phenomena like hurricanes or
tornadoes are less prevalent or absent in Europe or, when thinking of e.g.
thunderstorms, just have a less strong impact. Additionally, there exist sig-
nificant differences in the organisation and configuration of U.S. and Euro-
pean airspace and airports3. In the context of delay generation, the most
striking difference is that in Europe, declared capacity for an airport is based
on IMC (Instrument Meteorological Conditions) operations, as compared to
VMC (Visual Meteorological Conditions) operations in the U.S. Thus, ad-
verse weather conditions are likely to have a larger impact on air traffic
operations in the U.S., from the outset.

As a support for NASA’s Terminal Area Productivity Program, Chin

et al. (1997) investigated U.S. airport surface delays and causes, access-
ing several databases, reports and information sources. They found that
weather frequently has an impact on surface movements even when the air-
port of interest is not directly affected by adverse weather. Nevertheless,
delays are generated through ground holds due to adverse weather at the
airport of destination or en-route. Chin et al. emphasised the importance
of visibility for surface movements. In that context, it should be noted that
ground visibility is often still sufficient for normal ground operations even
when IFR are in effect. A major problem Chin et al. faced with respect to

3For more information, refer to Liang et al. (2000).
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a detailed quantification of the weather impact on air traffic operations was
the limitation of delay databases, in particular with focus on delay causes.
Weather as one among many delay generating factors was hard to isolate.
Accessing the FAA’s Air Traffic Activity and Delay Report and considering
delays greater than 15 minutes only, Chin et al. found that, from 1984 to
1994, about 65% of delays were due to weather. Other studies from Lock-
heed Martin and from MIT Lincoln Laboratory, where a simple Aviation
Weather Delay Model, based on average delay on clear days and additional
delay on days with a particular type of weather in effect, was developed, es-
timated that weather accounts for roughly 40% of all delays, considering all
delay durations. Results obtained from the Aviation Weather Delay Model
also revealed that the fraction of weather-related delays varies significantly
among U.S. airports. Whereas, for 1994, only 22.7% of all delays at John
F. Kennedy International Airport were due to weather, Detroit Metropolitan
Wayne County Airport and Los Angeles International Airport experienced
more than 60% of weather-related delays.

Dillingham (2005) analysed U.S. federal government, airline and airport
initiatives to reduce flight delays and enhance capacity. In particular, he fo-
cused on remaining challenges against the background of adverse weather
and limited resources. Dillingham emphasised that 70% of the U.S. flight
delays from 2000 to 2004 were, according to FAA figures, related to weather,
followed by the general lack of capacity. Large potential for improvement
with focus on an optimisation of airspace utilisation through maximisation
of system throughput and optimisation of traffic flow is expected from new
technologies such as the Integrated Terminal Weather System or the Collab-
orative Convective Forecast Product, which is dedicated to support strate-
gic planning and management of air traffic during severe, mostly convective
weather.

Both in the U.S. and in Europe, several studies were conducted in which
the costs related to delays and the benefits that might be achieved through
reduction of these delays were analysed. Robinson (1989) investigated the
impact of various types of weather on operations for one airline operating
at Atlanta Hartsfield International Airport. He found that fog and thun-
derstorms, only, involved annual delay costs of more than $6 million for
that respective airline. Robinson emphasised that better forecasts could
potentially reduce the costs through adapted flight planning. ITA (2000)
concluded that for 1999, delay costs in Europe were between 6.6 and 11.5
billion Euros. These estimates included airline costs, passenger costs and
costs for non-optimal scheduling. Within a report prepared by the Perfor-
mance Review Commission of EUROCONTROL, European airlines’ costs of
one minute of airborne or ground delay were evaluated (EUROCONTROL,
2004). Extensive information is presented for different cost scenarios, aircraft
types and lengths of delay. It is emphasised that tactical costs of delay de-
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pend strongly on these key factors. One major finding was that passenger
delay costs incurred by airlines are found to be at 0.3 Euros per average
passenger, per average delay minute and per average delayed flight.

With focus on modelling, there exist several studies with wide-spread ob-
jectives. In the U.S., initiatives to estimate benefits of planned or executed
investments induced the development of models that, among other things
and often just as a spin-off product, allowed for a quantitative analysis of the
weather impact on air traffic operations, with special focus on system perfor-
mance and efficiency. Hansen and Wei (1999), for example, estimated the
benefit of a major capacity expansion at Dallas-Fort Worth International Air-
port, employing multivariate statistical methods. They related flight times
to demand, weather, origin airport congestion and the expansion itself. In
their a posteriori study, they found that through this NAS investment, the
daily average flight time for arrivals could be significantly reduced, especially
on low visibility days. Hansen and Wei, however, pointed out that benefit
estimates were difficult to assess since other effects, such as increased demand
or worse weather, had partially offset the primary benefits from the expan-
sion. In a study on arrivals at Los Angeles International Airport, Hansen

and Bolic (2001) again used the approach described in Hansen and Wei

(1999) in order to investigate and isolate the effect of two system enhance-
ments. Running the developed models, about 75% of the day-to-day vari-
ation in their daily flight time index, which basically comprised a weighted
average of daily arrivals’ flight times, could be explained, with origin airport
congestion being the most and demand being the least important source of
variation. Weather factors associated with temperature, wind or visibility
were found to be highly relevant. Additionally allowing for quadratic and
interaction terms, even an R2 of 0.82 could be achieved.

Callaham et al. (2001) addressed the problem of weather normalisation,
which is necessary when airspace system performance measures are compared
over different time intervals and effects of system improvements are to be
quantified. They developed a scalar Weather Impacted Traffic Index (WITI)
that classifies each day according to occurred weather, both en-route and
within terminal areas. In a second approach, Callaham et al. analysed
a weather and traffic based day-type clustering approach in order to deter-
mine the contribution of weather to airspace system performance. In both
approaches, regression modelling was applied, using an airspace system per-
formance measure such as e.g. average arrival delay greater than 15 minutes
as the predictant. Results obtained were promising. Taking e.g. the WITI
approach, an R2 of 0.71 could be realised. A potentially valuable spin-off
application of both methods is their usage for a forecast of airspace perfor-
mance for a day in the future, given that traffic and weather forecast figures
are provided, thus aiding strategic ATFM planning and decision making.

Against the background of improved weather forecasting, which is ex-
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pected in the future, Hoffmann et al. (2004) analysed the weather impact
on airport ground delay program (GDP) procedures through a linear regres-
sion modelling approach. Chicago O’Hare International Airport was chosen
as the airport of investigation. Traffic and simple, reflectivity-based weather
information was used to determine the relationship between weather and en-
route delays. Based on this, a projection of arrival delay for arriving flights
is provided. This information can finally be used to determine optimal GDP
procedures thus minimising delays. Abdelghany et al. (2004) focused on
flight delay propagation within a single airline schedule. They constructed a
model which allows for a projection of down-line flight delays during irregular
operations, especially when GDPs are issued. The model additionally allows
for a distinction of delay reasons. For example, it is found that about 42%
of all delayed flights are delayed due to assigned aircraft being not timely
ready. The major benefit of the delay projection system is that controllers
can take pro-active recovery action to recover or even avoid delays. For one
U.S. airline only, the benefit of the flight delay projection amounted to $1.6
million in the first quarter of 2004.

For Europe, comparable modelling approaches in many cases evolved from
more theoretical reasoning. Often, pure scientific questions were the drivers
for developments and tools that, nevertheless, are potentially qualified to be
used in operational environments. One of the first studies that concentrated
on the modelling of punctualities in Europe was published by Spehr (2003).
Using a two-year dataset from Frankfurt and Munich Airports, Spehr ap-
plied multivariate linear regression in order to explain variability in daily
punctualities through local weather and traffic. Diagnostic model results
achieved were promising, exhibiting R2 values between 0.4 and 0.5. How-
ever, exceptional days, e.g. days with strikes or system failures, were a priori
excluded from the analysis. Besides this drawback, several potential model
improvements were suggested and are subject of this thesis.

Rehm (2003) and Rehm and Klawonn (2005) took up the modelling
approach introduced by Spehr (2003) and developed it further in another
direction. Instead of analysing punctualities, Rehm and Rehm and Kla-

wonn concentrated on the modelling of schedule-independent travel times
from entrance into an airport’s TMA until landing. Indeed, these times are
less interesting from a passenger point of view, however, they constitute an
important quality measure for air traffic services responsible for approach and
landing. By applying this approach, only local effects are considered. De-
lays produced outside the TMA are not taken into account and do thus not
bias computations. Rehm and Rehm and Klawonn evaluated several data
mining techniques such as linear regression, regression trees, fuzzy cluster-
ing and neural networks. Good modelling results could be achieved through
application of linear regression, where diagnostic R2 values realised were in
the range of 0.6. Solf (2005) analysed several factors having an effect on
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the variability of aircraft approach times within an airport TMA. Exemplary
calculations of approach times were made with the aid of a trajectory cal-
culator. Solf found that blocking of runways, failures of landing systems
and adverse weather have the greatest influence. With focus on weather,
thunderstorms, solid precipitation and strong winds rank first.

In several studies, Wu and Caves (2000, 2002, 2003a,b, 2004) and Wu

(2005) did significant research in airline network and aircraft rotation mod-
elling as well as in the field of schedule optimisation. They developed both an
aircraft turnaround and an en-route model to simulate ground operations and
processes as well as aircraft rotation throughout a whole day. These models,
for example, allow for an in-depth analysis of the relationship between flight
schedule punctuality and aircraft turnaround efficiency at airports and can
thus be used to minimise system operational costs while maintaining a re-
quired level of schedule punctuality. As a major finding of the studies by Wu

and Caves, departure punctuality of a turnaround aircraft was found to be
mainly determined by the arrival punctuality of inbound aircraft, the oper-
ational efficiency of aircraft ground services and the length of the scheduled
turnaround time. In that context, longer turnaround times at hubs including
conservative buffer times turned out to improve the punctuality performance
in aircraft rotations. In a study issued by EUROCONTROL (2003), the
propagation of flight delay was investigated using local arrival and departure
models on French flight and airport data. These models were based on pre-
dictors of the form ”day of the week” or ”load on arrival”. Weather was not
directly covered but indirectly captured by the predictor ”capacity”. It could
be shown that arrival delay depends heavily on departure delay produced at
the previous station. For departure delay, a strong correlation to the previous
arrival delay is found. Nevertheless, departure delay for an aircraft can gen-
erally be predicted by departure plane load, in case the aircraft experienced
no significant arrival delay at the station of interest. By the use of a general
model for delay formation along aircraft trajectories, it could also be demon-
strated that long delays are generally produced through ATFM regulations
or non-traffic related events.

Eventually, there are some industry developments outside the frame of
scientific studies and modelling. Most of these developments arose from spe-
cific and often location-dependent air traffic stakeholder needs and are, in
most cases, also limited in their application. System prototypes, tools and
even fully operational systems are mostly customised to account for local
or regional environmental, instrumentational and organisational constraints.
At Frankfurt Airport, for example, the CAPMAN tool was developed in the
frame of the K-ATM project (FRAPORT, 2007; Brozat, 2007). The initial
purpose of CAPMAN is a forecasting of available airport capacity for the on-
going day. As a spin-off product, a punctuality module allows for a derivation
of punctuality estimates from demand and predicted capacity. CAPMAN,
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in that sense, is to be understood as a nowcasting tool, intended to be im-
plemented in FRAPORT’s operational infrastructure. A similar tool is also
known for Amsterdam Schiphol Airport. The Capacity Prognosis Schiphol
Tool CPS, a joint project of Amsterdam Schiphol Airport, the local ATC,
KNMI and KLM, provides short- and long-term capacity forecasts, based
on a special probability forecast of weather elements by the Royal Nether-
lands Meteorological Institute (KNMI). In particular, only wind, visibility
and snowfall are considered (KLM, 2009). The tool is to be understood as
support for decision making in the case of anticipated severe weather and
runway maintenance.

These developments show that there is a clear need for both an improved
understanding of delay-generating processes and, consequently, strategies and
tools aimed at a reduction of air traffic delays and a more efficient use of
limited resources. All studies introduced confirm that there is great potential
for saving costs.

1.4 Motivation and Objectives

As introduced in the previous sections, there exists only a limited number
of studies where mathematical models were used to investigate delays and
related implications. On the contrary, many analyses on air traffic delay
draw upon delay codes or related delay specification sources with all their
drawbacks. Many authors have criticised this approach. Therefore, Niehues

et al. (2001) proposed three lines of action out of this misery:

1. process monitoring and sampling

2. simulation

3. conventional analytical methods

The present work is based on the latter approach. The starting point for the
analysis at hand is the groundwork on punctuality modelling done by Spehr

(2003). Her work paved the way by setting a principal punctuality modelling
frame, discussing the mathematical background and presenting first results
and limitations of the underlying modelling approach.

The present work picks up on suggestions for improvement made by
Spehr. For her investigations, Spehr used two limited 2-year data sets
from Frankfurt and Munich Airport. Naturally, a first recommendation was
an enlargement of the underlying database in order to investigate stability
and generalisability of punctuality models and results obtained. Secondly,
Spehr proposed the inclusion of predictor variables related to upper level
wind, as an in-depth analysis of low-punctuality days provided a clear indi-
cation of the strong impact of upper level winds on current airport capacity
and thus punctuality. A third area for improvement is a higher temporal
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resolution of predictor variables. That way, also different impact weighting
during the course of day can be realised. In order to better reflect the actual
demand, information on scheduled traffic or another capacity-related predic-
tor should be additionally included. Last but not least, a better integration of
operational thresholds and a translation of these into meaningful predictor
variables was recommended. Together with these suggestions for improve-
ment, new ideas are developed and tested in different enhanced punctuality
models.

The general question evolving for the present work is: To what extent can
modelling results be improved? In order to answer this question, a working
hypothesis is formulated. It is assumed and it will later be shown that a
major part of the variability of daily punctuality and thus air traffic delays
is attributable to weather. In that respect, the present work abstains from
an analysis of en-route weather and concentrates on weather at the airport
and within its terminal area. The reasoning behind this assumption is that
weather observed in that respective area is representative for a much larger
catchment area. To be more precise, weather observed at Frankfurt Airport
or its vicinity is often correlated with weather observed at other German
or even Middle-European airports. For example, frontal systems moving in
from the Atlantic and affecting Frankfurt Airport are likely to have already
passed Amsterdam Schiphol Airport or Paris Airport and are also likely to
later affect e.g. Munich or Vienna Airport. This is of course not always true
and often certain weather events are clearly local, especially when they are
of convective nature. But in general, it can be assumed that adverse weather
is locally correlated within Europe to a certain extent. When focusing on
weather on a daily basis, e.g. through formulation of day statistics, a weather
signal recorded at Frankfurt Airport is then to be interpreted as partly rep-
resentative for a certain correlation radius, with decreasing correlation when
moving away from its centre.

In the approach at hand, the complex processes generating delays are
not considered separately. Rather, punctuality is modelled through an inte-
grated multivariate approach, using local parameters only. This allows for
an analysis of combined effects without abstaining from special analyses on
single factor impacts. Single processes, however, need not to be individually
modelled. Local weather is, in that respect, considered as a governing factor,
covering or representing many delay sources. For example, crews or passen-
gers may arrive late at the airport due to weather-induced traffic holdups,
or ground operations such as e.g. baggage or bus transport may be impeded
by contaminated apron surfaces. Thus, weather acts on airport operations in
many ways, be it directly and indirectly. Based on this, four major questions
are derived as the cornerstones of this work:

1. To what extent can punctuality be modelled, i.e. how much of the
variability of daily punctuality can be explained through the approach
chosen?
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2. How large is the weather impact on punctuality?

3. What is the weighting of certain impact factors, be it weather- or non-
weather related?

4. Is the chosen approach qualified for a punctuality forecast?

The stated questions are to be answered using Frankfurt Airport as the
airport of investigation. It is assumed that underlying findings can be gen-
eralised or at least transferred to other major European hub airports. It has
to be pointed out that the present approach does neither take into account
imported delays4 nor delay generating ground operation processes at aircraft
turnaround5. Nevertheless, these are indirectly reflected in the daily punc-
tuality statistics used for model calibration. The modelling approach itself,
however, remains purely independent of these.

Taking all this into account, the present work is ground-breaking in the
modelling of punctuality and thus makes a significant contribution to the
understanding of the true weather impact on air traffic operations and delays.
Moreover, the developed punctuality forecast model, potentially allowing for
a punctuality forecast on a daily level, offers new planning possibilities and is
thus of great value as a decision support for air traffic stakeholders depending
on performance parameters for the planning of daily operations.

4See e.g. Wu and Caves (2003b) or EUROCONTROL (2003) for more details on
the development of knock-on delays through aircraft rotation and Beatty et al. (1998)
or Boswell and Evans (1997) for details on flight delay propagation.

5See e.g. Wu and Caves (2000) or Wu and Caves (2004) for more details on the
impact of aircraft turnaround processes on punctuality.
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Chapter 2

Methodology and Data

2.1 The Study Airport Frankfurt

2.1.1 General Description

Frankfurt Airport (ICAO code EDDF, IATA code FRA) is an airport in the
state of Hesse, Germany at 111m a.m.s.l. It is the largest German airport
and it is equipped with three runways (see Figure 2.1). The parallel runway
system (RWY07/25) is operated as a dependent dual runway system and is
used for both take-offs and landings. Runway 18 is used for departures only.
It is solely operated in southward direction.

Figure 2.1: Frankfurt Airport with its three runways.

The development of declared airport capacity at Frankfurt Airport is
shown in Figure 2.2. The current declared airport capacity for Frankfurt
Airport is 75-83 total movements per hour (FHKD, 2008), depending on the
time of day. Within this total frame, 41-44 arrivals and 43-52 departures

19
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can be operated per hour. During peak hours, these hourly values can be
exceeded for short periods in fair weather conditions.

Figure 2.2: Declared capacity at Frankfurt Airport (FRAPORT, 2006).
1)Future for FRA (cooperation between DLH, DFS and FRA)
2)more evenly slot distribution per hour regarding arrivals and departures
3)closure U.S. airbase
4)cutting of declared capacity during busy morning hours (focus on punctuality), blue:
before noon, grey: afternoon.

2.1.2 Traffic and Passenger Volume at Frankfurt Air-
port

Frankfurt Airport has an annual traffic volume of almost 500,000 flight move-
ments and a passenger volume of more than 50 Million passengers per year.
It is thus the second largest airport in Europe behind Paris Charles de Gaulle
with regard to traffic volume and the third largest behind London Heathrow
and Paris Charles de Gaulle considering passenger volume. Figure 2.3 shows
the development of traffic (upper chart) and passenger (lower chart) volume
for the period of investigation. Traffic has increased from 456,000 flight move-
ments in 2001 to 490,000 in 2006. Inbound and outbound flight movements
are naturally balanced. Passenger volume has increased from 50 Million in
2001 to 53 Million in 2006. The 9/11 event likely explains the slight decrease
in passenger volume in 2002 and 2003. Flight movements remained almost
constant in these two years.

For modelling purpose (also see Sections 3.2.6 and 3.2.8), information on
scheduled as well as actual traffic was available for Frankfurt Airport, sepa-
rated into inbound, outbound and total movements per day. Daily scheduled
traffic at Frankfurt Airport has continuously increased in the period of inves-
tigation. In 2001, there were an average of 1276 scheduled movements per
day. In 2006 the respective figure was 1366. Figure 2.4 shows both the total
scheduled daily movements (TOTFLscℎeduled) and the trend-corrected daily
residuals. The red line in the upper graph depicts the linear traffic trend. It
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Figure 2.3: Actual traffic (upper chart) and passenger (lower chart) volume at Frankfurt
Airport from 2001-2006. Red: Inbound, Blue: Outbound, Black: Total.

shows that TOTFLscℎeduled generally has a yearly minimum on New Year’s
Eve and New Year’s Day and a maximum in the summer holiday season.
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Figure 2.4: Scheduled daily traffic (TOTFLscℎeduled) at Frankfurt Airport between Jan-
uary 2001 and December 2006. The red line in the upper graph depicts the trend in the
6-year period. The lower graph shows the trend-corrected daily residuals.
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(a)

(b)

Figure 2.5: Arrivals (red) and departures (blue) at Frankfurt Airport in 2008 per gliding
hour, (a) winter (November-March), (b) summer (April-October).

TOTFLscℎeduled is generally a good representative for scheduled flight
movements. The correlation with scheduled inbound traffic (INBFLscℎeduled)
is high (r = 0.995), just as with scheduled outbound traffic (OTBFLscℎeduled,
r = 0.995). On most days, there is a small gap between scheduled and ac-
tual flight movements which is due to flight cancellations and diversions. On
average, there are 15 flight movements less per day than actually scheduled
with a maximum difference of 687 movements on the 3 March 2006. On
that day, Frankfurt experienced heavy snowfall with a buildup of a snow
cover of 17 cm at subzero temperatures. There are, however, also days with
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more flights than actually scheduled. Generally, this is due to flight diver-
sions to Frankfurt Airport, short term flight plan changes or recovering from
disrupted previous days.

For reference purposes, Figure 2.5 shows average daily arrivals and de-
partures (exemplarily for 2008), subdivided into summer (April-October) and
winter (November-March). One can clearly distinguish four arrival and five
departure banks, both in the summer and the winter season. Arrivals peak
around 8 a.m., between 11 a.m. and 12 p.m., between 3 p.m. and 4 p.m. and
around 8 p.m. Departure peaks are found at 8 a.m, between 10 and 11 a.m.,
around 1 p.m., between 4 and 5 p.m. and between 9 and 10 p.m. Especially
the afternoon and evening arrival banks are clearly followed by departure
banks. This is a typical pattern for a hub airport.

2.1.3 Operational Procedures

With regard to modelling punctuality at Frankfurt Airport, some operational
procedures and thresholds have to be taken into account. As mentioned in
Section 2.1.1, movements are officially limited to a maximum of 83 per hour.
Within this frame, a maximum of 44 arrivals per hour can be handled. In
low visibility and/or high wind conditions, the acceptance rate can decrease
to as much as 35 arrivals per hour. Exact values are given in the arrival
rate matrix (see Figure A.1 in Appendix A). It should be mentioned that
at Frankfurt Airport regular operations are at CAT I level (see Table 2.1).
Thus, deterioration of Runway Visual Range (RVR, corresponds to visibility)
and Decision Height (DC, corresponds to ceiling) down to CAT II or III
conditions imposes a lower acceptance rate. Regarding approach staggering,
crucial wind levels are between FL30 and FL50 as shown in Figure A.1.
Headwind thresholds inducing lower acceptance rates are at 15, 25 and 35 kts.
Acceptance rate can, of course, decrease to 0 movements when runways and
taxiways are temporarily closed during snowplough and runway treatment
operations.

Runway 18 is generally closed when the tailwind component (hence nor-

Table 2.1: Definition of CAT stages, determined by minima of Runway Visual Range
(RVR) and Decision Height (DH). In case RVR and DH apply to different CAT stages,
the worse category is chosen.

CAT stage RVR minimum [m] DH minimum [ft]

CAT I 550 200
CAT II 300 100
CAT IIIa 200 50
CAT IIIb 75 <50
CAT IIIc 0 0
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Figure 2.6: Daily punctuality TOTP at Frankfurt Airport between January 2001 and
December 2006 (upper chart). Also shown is a 4th-polynomial fit. The lower chart shows
annual means of TOTP and the mean of TOTP in 2001-2006.

therly wind) is greater than 15 kts. Operational constraints, however, already
arise when the tailwind component exceeds 10 kts as some pilots consider
this threshold as a crucial take off limit. There are no official thresholds
for operations in heavy crosswind conditions. Runway configuration on the
parallel runway system depends on the tailwind component. The preferred
and also prevalent runway configuration is RWY25. A change of runway
configuration is initiated when the tailwind component exceeds a limit of
5 kts.

2.1.4 Punctuality at Frankfurt Airport

Archived monitored punctualities at Frankfurt were available for investiga-
tions on a daily level. The upper chart of Figure 2.6 shows total daily punc-
tuality (TOTP) for 2001-2006. The mean value for this period is 0.764. The
lowest TOTP value was observed on 3 March, 2006 with 0.16. This was a
snowfall day at Frankfurt Airport as described in Section 2.1.2. The highest
value was recorded on 20 May 2002 with 0.95. Using a separation in summer-
time and wintertime period (daylight saving time as reference), an average
punctuality value of 0.776 for the summer and 0.747 for the winter period is
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Table 2.2: Annual statistics of TOTP. The last row gives the percentage of days with
TOTP<0.5.

2001 2002 2003 2004 2005 2006

min 0.21 0.35 0.20 0.17 0.21 0.16
mean 0.76 0.78 0.78 0.77 0.76 0.73
max 0.91 0.95 0.93 0.92 0.91 0.90
std 0.11 0.11 0.11 0.12 0.12 0.14
< 0.5 (%) 3.01 3.84 2.19 4.64 4.93 7.40

found. Mean punctuality also varies among years. The lower chart of Figure
2.6 shows annual mean punctualities for 2001-2006. Punctualities lie roughly
between 0.76 and 0.78, only 2006 sticks out with a mean of only 0.727. Ac-
cording to FRAPORT (2006) that drop in punctuality was due to weather,
preparative reorganisation for the A380, short-term changes in parking posi-
tions, new security regulations and construction sites due to modernisation
and fire prevention. Table 2.2 gives a summary of total punctuality statistics
for each year in the investigation period.

Total punctuality correlates well with inbound punctuality (INBP) and
outbound punctuality (OTBP). The first correlation is r = 0.973, the latter
is r = 0.965. INBP and OTBP are correlated with r = 0.881. The autocorre-
lation of TOTP is shown in Figure 2.7. The lag-1 autocorrelation is � = 0.42
and thus significantly higher than for any other lags. Heavy disruptions on
a certain day generally also have an impact on the following day. Hence, a
day with a low TOTP is likely to be followed by a day with a suboptimal

Figure 2.7: Autocorrelation of TOTP at Frankfurt Airport.
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TOTP. There are several reasons for this effect, such as:

∙ aircraft scheduled for departure on the following day were not able to
land on the disrupted day

∙ aircraft scheduled for departure on the disrupted day could not take off

On the day following the disrupted day, a situation is generated with
certain aircraft not in place with regard to their regular schedule on the one
hand and additional aircraft for departure on the other hand. At an airport
operating at its nominal capacity, these deviations from the regular schedule
are likely to cause suboptimal operations.

2.1.5 Weather at Frankfurt Airport

This section focuses on the variability of a selection of weather parameters
at Frankfurt Airport within the 6-year investigation period. For longer cli-
matologies, in-depth literature such as Heinemann (2008), Bartels et al.
(1990) or Müller-Westermeier et al. (1999, 2001, 2003, 2005) is recom-
mended. Data used are described in Section 2.2.2.

Table 2.3 shows the numbers of occurrence for a selection of weather pa-
rameters, relevant to airport operations, in 2001-2006. Numbers given repre-
sent the days of occurrence within each of the six years under investigation.

Table 2.3: Selection of weather parameters for Frankfurt Airport in 2001-2006. Numbers
given are days of occurence in the respective years. Min, mean and max values are
additionally shown.

parameter 2001 2002 2003 2004 2005 2006 sum min mean max

snow cover 27 20 16 31 30 27 151 16 25.2 31
frost 71 46 83 73 69 71 413 46 68.8 83
frost at ground 92 71 105 93 92 89 542 71 90.3 105
ground frozen 44 22 50 48 38 42 244 22 40.7 50
glaze 3 1 1 1 5 6 17 1 2.8 6
fog 18 10 13 17 13 26 97 10 16.2 26
thunderstorm 26 29 32 29 24 46 186 24 31.0 46
precip. any 243 230 195 241 237 241 1387 195 231.2 243
precip. any> 10mm 17 24 7 13 13 15 89 7 14.8 24
precip. solid 41 21 29 54 51 40 236 21 39.3 54
precip.mod.a/str.b 129 118 77 92 98 103 617 77 102.8 129
precip. freezing 1 3 2 0 3 3 12 0 2.0 3
storm gustc 5 7 4 7 4 3 30 3 5.0 7
windlim RWY18d 39 49 43 33 36 30 230 30 38.3 49
windul ≥ 15 kte / / 261 295 283 297 1136 261 284.0 297
windul ≥ 25 kt / / 150 163 140 170 623 140 155.8 170
windul > 35 kt / / 64 65 61 86 276 61 69.0 86

amoderate
bstrong
c≥ 20.8m/s
d10 kt tailwind
eupper level wind (3000-5000 ft) in direction of RWY07/25
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Table 2.4: Selection of weather parameters for Frankfurt Airport in 2001-2006. Numbers given are the min, mean and max number of days of
occurrence in the respective months.

parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

snow cover min 5 1 0 0 0 0 0 0 0 0 0 0
mean 10 6.2 3.2 0.3 0 0 0 0 0 0 1 4.5
max 19 13 9 2 0 0 0 0 0 0 5 11

frost min 12 5 5 1 0 0 0 0 0 0 1 12
mean 17.8 15.3 11.8 2.3 0 0 0 0 0 1.2 4.8 15.5
max 23 24 19 5 0 0 0 0 0 6 10 20

frost at ground min 15 12 8 4 0 0 0 0 0 0 3 12
mean 19.8 18.5 14.8 6.7 0.3 0 0 0 0 2.8 8.5 18.8
max 24 27 21 11 2 0 0 0 0 11 15 23

ground frozen min 0 4 2 0 0 0 0 0 0 0 0 7
mean 9.5 10.5 6.7 0.3 0 0 0 0 0 0.5 2.8 10.3
max 14 20 10 1 0 0 0 0 0 3 7 15

glaze min 0 0 0 0 0 0 0 0 0 0 0 0
mean 1.3 0.5 0.2 0 0 0 0 0 0 0 0 0.8
max 5 1 1 0 0 0 0 0 0 0 0 3

fog min 1 0 0 0 0 0 0 0 0 0 0 0
mean 2 1.2 1.5 0.5 0.3 0.7 0.3 0.3 0.8 4.2 2.2 2.2
max 3 3 5 1 1 1 1 1 4 6 4 5

thunderstorm min 0 0 0 1 2 4 5 2 0 0 0 0
mean 0 0.3 0.8 2.5 4.7 6.3 7.3 6.5 1 1.3 0.2 0
max 0 1 2 4 8 9 13 13 2 3 1 0

precip. any min 20 13 15 14 11 14 15 9 9 11 20 19
mean 23 20.5 20.7 17.8 18.3 16.2 19 19.2 14.2 17.5 22 22.8
max 26 25 26 26 23 20 25 28 27 24 25 27

precip. any> 10mm min 0 0 0 0 1 0 0 0 0 0 0 0
mean 1.2 0.7 0.8 0.7 3 0.7 1.2 2.2 1 1.3 1.5 0.7
max 2 2 3 4 4 1 3 5 3 4 5 2

precip. solid min 7 5 0 0 0 0 0 0 0 0 0 1
mean 11.2 10.7 6.2 1.5 0 0.2 0.2 0 0.2 0 1.8 7.5
max 18 18 14 5 0 1 1 0 1 0 6 16

precip.mod./str. min 7 3 3 5 4 3 7 3 2 2 6 7
mean 10.2 9.5 8.2 9.5 8.3 5.7 8 8.7 5.8 8.8 10.2 10
max 13 16 18 16 14 9 10 16 12 15 14 13

precip. freezing min 0 0 0 0 0 0 0 0 0 0 0 0
mean 1 0 0 0 0 0 0 0 0 0 0 1
max 2 0 0 0 0 0 0 0 0 0 0 2

storm gust min 0 0 0 0 0 0 0 0 0 0 0 0
mean 0.8 1 0.5 0.5 0.2 0.5 0.5 0.3 0 0.5 0 0.2
max 2 3 2 1 1 1 1 2 0 2 0 1

windlim RWY18 min 0 2 1 4 1 0 0 0 0 0 0 0
mean 2.5 4.5 4.7 6.3 5 2.7 2 2.2 2.5 1.3 1.5 3.2
max 6 6 8 8 11 4 6 6 7 3 4 8

windul ≥ 15 kt min 24 19 21 19 16 16 18 11 17 27 26 25
mean 27.8 21.8 25.3 22.5 21.8 19 21.8 21 20 28 27.5 27.8
max 30 24 30 26 27 23 25 26 25 29 29 31

windul ≥ 25 kt min 13 10 6 9 3 4 5 4 5 16 14 13
mean 19 14.3 12 10.8 10.8 7 9 9.5 8.5 19.8 18.3 17
max 23 18 19 13 19 11 14 15 15 23 22 22

windul > 25 kt min 2 2 4 3 1 0 0 1 2 7 4 7
mean 10 5.8 6.3 4.8 4.8 1.8 1.8 2.8 4 9 8.3 10
max 17 9 11 7 10 3 3 5 7 12 16 16
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For easier interpretation, the last four columns show total numbers as well
as minimum, mean and maximum numbers. Table 2.4 gives more detailed
information on the monthly distribution of the selected parameters. In the
following, all parameters are discussed with focus on their impact on airport
operations.

Tables 2.3 and 2.4 show parameters with and without distinct seasonal
distribution at Frankfurt Airport. Typically, parameters can be classified
into summer-, winter- and all-season parameters. Precipitation, for example,
is found throughout the whole year. On average, Frankfurt Airport experi-
enced 231 precipitation days per year. The highest average monthly precip-
itation day numbers were found in the winter season, with a maximum of
23 precipitation days in January, on average. However, August experienced
28 precipitation days at maximum and thus 2 days more than January with
its maximum of 26 days. When looking at heavy precipitation days, here
defined as days with more than 10mm of total precipitation, and at days
with moderate/strong precipitation, no distinct seasonal distribution can be
extracted, either. On average, there were almost 15 heavy precipitation days
per year. A maximum of 5 days was recorded in August and November,
each. Moderate/strong precipitation was observed on 103 days per year, on
average, with a maximum of 18 days in March 2001. The mean value for
March, however, is only 8.2 days and thus lower than for e.g. February and
April.

Strong winds, both at surface and in approach levels, have an impact on
airport capacity, as described in Section 2.1.3 (also see Figure A.1). Storm is
defined as wind exceeding 20.8m/s. Hence, a storm gust is a gust satisfying
this condition. On average, Frankfurt Airport experienced 5 days per year
with storm gusts. Generally, those days were connected to the passage of
low-pressure storm systems. Except from September and November, each
month experienced such events at least once in the investigation period. A
maximum of 3 events was observed in February 2002. As described in Section
2.1.3, 15 respectively 10 kts are critical tailwind limits with regard to the use
of RWY18. On average, almost 40 days per year were observed exceeding
the 10 kts limit. Following the arrival rate matrix for Frankfurt Airport
(A.1), days were analysed, where winds in 3000-5000 ft exceeded defined wind
thresholds. The limits were 15, 25 and 35 kts. The 25 kts limit was exceeded
on 284 days per year, on average. Generally, more events were found during
the winter seasons. The same pattern holds for the 25 and 35 kts thresholds.
A limit of 35 kts was exceeded on 69 days per year, on average. January 2005
experienced as much as 17 days exceeding this threshold.

Low visibility conditions generally lead to a significant drop in airport
capacity (see Figure A.1). Depending on Runway Visual Range (RVR) and
Decision Height (DC ), conditions are classified in categories CAT I to CAT
III (see Table 2.1). CAT III itself is again subclassified into CAT IIIa to
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CAT IIIc. Generally, RVR cannot be directly translated into meteorological
visibility and vice versa as RVR is defined in RWY-direction only. Thus,
Tables 2.3 and 2.4 give more general visibility information on the occurrence
of fog instead. Fog is reported when visibility is reduced to less than 1 km.
Frankfurt Airport experienced 16 fog days per year, on average. Most fog
days were observed in October. From April to August, fog was a very rare
event with one observation per month, at maximum.

Winterly weather conditions such as frost and ground frost, solid or freez-
ing precipitation, glaze and the built-up of a snow cover have an impact on
airport operations in many ways. Runways, taxiways and apron have to be
cleared of snow and ice such that safe operations are guaranteed. Snowplough
and runway treatment operations generally necessitate temporary closures of
runways and taxiways and thus lead to disruptions in the scheduled traffic
flow. Contamination of aircraft surfaces enforces de- and anti-icing proce-
dures, potentially causing delays. For a detailed analysis of winter weather
operations with focus on snow removal and aircraft de-icing operations please
refer to Röhner (2004), Röhner and Hauf (2008) and ICAO (1993). In
the investigation period, Frankfurt Airport experienced 25 days per year with
snow cover, on average. Numbers lie between 16 and 31 days. The main sea-
son for the built-up of a snow cover was from December to March, with a
distinct maximum in January. November and April also noticed a few snow
cover events. Solid precipitation was observed from November to April with
January and February being almost on the same level with an average of
roughly 11 snowfall days. The events in June, July and September are con-
nected to hail instead of snow. Glaze was a rather rare event at Frankfurt
Airport with an average of roughly 3 events per year. However, variability
was high with a minimum of one event and a maximum of 6 events per year.
Glaze occurred between December and March with a maximum in January.
The reason for glaze can either be water patches that freeze on the ground
due to cooling, or freezing precipitation. The latter occurred twice per year,
on average, with a minimum of zero occasions and a maximum of 3 occasions.
Freezing precipitation was found in December and January, only. Frost and
frost at ground were rather common events between November and March.
Frost at ground occurred as late as in May and as early as in October. In
accordance with long-time climatologies, January observes most frost/frost
at ground days with an average number of roughly 18 days. Altogether, there
were approximately 70 days per year with frost and 90 days per year with
ground frost, on average. Ground frost, i.e. frozen soil, is related to frost at
ground. It was observed on 40 days per year on average and between October
and April. Most frequent occasions were between December and February
with an average of approximately 10 days per month and a maximum of 20
days per month.

The only typical summer parameter among the selected weather param-
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eters is thunderstorm. Thunderstorms are critical weather events and when
they pass the airport directly or occur in the airport TMA, they can cause a
significant drop in airport capacity down to a temporary closure of the run-
ways in extreme cases. Within the investigation period, Frankfurt Airport
experienced 31 thunderstorm days per year, on average. In 2006, a maximum
of 46 days was observed. The main thunderstorm season at Frankfurt Air-
port was from May till August, with July and August being the peak months.
At maximum, 13 thunderstorm days per month were observed in July and
August, respectively. December and January experienced no thunderstorm
events at all, and also in November and February thunderstorms were very
rare with only one occasion per month at maximum.

2.2 Data

In the following sections, data used for punctuality modelling are described,
based on the initial raw data via several pre-processing steps down to the
point of the final predictor variables, which are prepared for feeding in the
model equations.

2.2.1 Punctuality and Operational Data

Punctuality and operational data as reported in the daily airport logs were
kindly provided by FRAPORT for 2001-2006 in daily resolution. Punctuality
was recorded separately for inbounds and outbounds as well as for total daily
movements (see columns 7-9 in Figure 2.8). For further analyses, only total
daily punctuality (TOTP) was considered. As shown in Section 2.1.4, TOTP
is highly correlated with INBP and OTBP.

Operational data was extracted from the daily airport logs. A short
example on the structure and information contained in these logs is given
in Figure 2.8. For further analyses, the following information was used and
translated into predictor variables (given in italic) that are later used for

Figure 2.8: Extract from daily log at Frankfurt Airport.



2.2. DATA 31

punctuality modelling:

1. special events and incidents, e.g. strikes, system failures (extracted from
the 2nd column ”Vorkommnisse”)

⇒ DayIndex

2. ATC regulations (extracted from the 2nd column ”Vorkommnisse”)
⇒ DayIndex

3. CAT stage > CAT I (extracted from the 2nd column ”Vorkommnisse”)
⇒ DayIndex

4. strong upper level winds (extracted from the 2nd column ”Vorkomm-
nisse”)

⇒ Hoehenwinde

5. change of runway configuration (extracted from the 3rd column ”Bahn”)
⇒ Mix

6. actual traffic (extracted from the 6th column ”TOT”)
⇒ TOTFL

DayIndex is a boolean (dichotomous) variable being assigned the value 1 if
either special events and/or incidents occurred, special ATC regulations were
mentioned in the airport logs or a CAT stage worse than CAT I was declared.
DayIndex is constructed that way that the three categories it is at maximum
built of can separately be ignored at value assignment, thus enabling detailed
analyses. The latter feature becomes especially important in the context of
punctuality forecasting as only predictable input variables can be used in this
respect.

In addition to the information drawn from the airport logs, numbers on
scheduled traffic (TOTFL scheduled) were provided by FRAPORT. If in the
analyses both actual and scheduled flight movements were used, TOTFL was
replaced by a new variable TOTFL scheduled minus TOTFL, i.e. the differ-
ence of scheduled and actual flight movements. This new variable describes
the effect of scheduled demand being greater than actual capacity, integrated
over the whole day. TOTFL scheduled minus TOTFL can both be positive
or negative. Positive values are due to cancellations, e.g. because of weather
or technical defects, and due to diversions (to other airports than Frank-
furt Airport). Cancellations, in that respect, can either mean no movement
at all, return from taxiway/runway or even return to airport after take off.
Negative values are mostly due to short-term additional flights, diversions to
Frankfurt Airport or additional flights on days following days with heavily
disturbed operations.
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2.2.2 SYNOP Weather Data

Archived weather observation data for Frankfurt Airport was obtained from
the German Weather Service (DWD) for 2001-2006, mostly on an hourly
basis, encoded on the basis of SYNOP-/FM12 coding. Some parameters
were observed and reported on a 6-/12-/24-hour basis only (see Table 2.5).
Altogether, 173 parameters describing weather at Frankfurt Airport were
provided and initially read in. Since punctuality is modelled at daily level
(see Section 2.3), weather data had to be pre-processed before being fed into
the model equations. The pre-processing basically comprised three steps:

1. choice of raw data for further processing

2. correction of missing or defective raw data

3. creation of day-representatives

Table 2.5 shows all weather parameters chosen for further processing from
the initial set of raw data. Units are already changed for further processing.
Column 5 of Table 2.5 indicates the observation frequency per day. Parame-
ters reported only once per day are generally reported at 6UTC, parameters
reported twice per day at 6 and 18UTC and parameters reported four times
per day at 0, 6, 12 and 18UTC. The last column of Table 2.5 gives the replace
index which is defined as follows:

0 = take previous value

2 = take the rounded average of the previous and the following value

3 = take the previous official value

4 = take the average of the previous and the following value

5 = replace with -1

6 = replace with 0

Missing parameter values were replaced according to these replace indices in
order to produce complete data matrices for further analysis.

Before the adoption of the replacement rules for missing values as de-
scribed above, missing values of TG24 were replaced by the minimum of
TG (if TG-data was available on these days) for the respective day. Missing
values of fx24 were replaced by values calculated from ff (if ff -data was avail-
able on these days) for the respective day using the mean ratio of fx24 and
max(ff ) calculated for each possible day (both values needed) in the 6-year
investigation period.

Starting from this corrected raw dataset, max-, min- and mean-values
were calculated for each day and for each non-encoded weather parameter.
Regarding precipitation, RRR was summed up to a total daily precipitation
amount to replace RR24, which is the amount of precipitation within the
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Table 2.5: Raw weather data chosen for further processing. 1st column: SYNOP code
abbreviation, 2nd column: description, 3rd column: physical unit, 4th column: resolution,
5th column: number of observations per day, 6th column: replace index.

code description unit res. obs. rep.

h height of cloud base m 10m 24 4
VV horizontal visibility m 10m 24 4
N total cloud amount eighth eighth 24 2
dd wind direction deg 10 deg 24 0
ff wind speed (10min average) m/s 0.1m/s 24 4
fx24 maximum wind gust m/s 0.1m/s 1 4
TT temperature (at 2m) ∘C 0.1 ∘C 24 4
TD dew point temperature ∘C 0.1 ∘C 24 4
P0 air pressure at station hPa 0.1 hPa 24 4
ww significant weather coded / 24 5
Nh cloud amount, low clouds only eighth eighth 24 2
CL cloud type, low clouds coded / 24 0
TE extreme temperature (min/max) ∘C 0.1 ∘C 2 3
TG temperature at ground ∘C 0.1 ∘C 24 4
TG24 minimum temperature at ground ∘C 0.1 ∘C 1 4
RRR precipitation amount mm 0.1mm 4 6
RR24 precipitation amount, 24 hours mm 0.1mm 1 6
RR1 precipitation amount, 1 hour mm 0.1mm 24 6
r1 precipitation duration last hour min 10min 24 6
E state of ground without snow coded / 4 5
SH height of snow cm 1 cm 4 4
UU relative humidity % 1% 24 4

last 24 hours, reported at 6UTC. Additional wind parameters were created
using the information on runway directions at Frankfurt Airport. Thus, mean
head-, tail- and crosswind components were calculated for each runway using
the following relationships:

headwind RWYxx =

{

ff ⋅ cos (dd − xx) for sign (cos (dd − xx)) > 0

0 otherwise

tailwind RWYxx =

{

−ff ⋅ cos (dd − xx) for sign (cos (dd − xx)) < 0

0 otherwise

crosswind RWYxx = abs (ff ⋅ sin (dd − xx))

For the crosswind component it is assumed that crosswind from the left has
the same impact as crosswind from the right. Keeping in mind that a change
of runway use is initiated when the tailwind component exceeds 5 kts, the
tangential wind component, i.e.:

tanwind RWYxx = abs (ff ⋅ cos (dd − xx))
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was additionally calculated. By doing that, it is implicitly assumed that
runway configuration changes are automatically initiated when the threshold
value for the tailwind component is exceeded. For an enhanced model ver-
sion, xx, i.e. the physically fixed runway direction, was replaced by the used
runway configuration xx’, i.e. 07 for arrivals/departures in direction 07 and
and 25 for arrivals and departures in direction 25. Daily airport logs (see
Section 2.2.1), however, only contained one entry per day in the format 07,
25 and Mix. That means, for days with a runway mix no decided informa-
tion on the time of runway configuration change is provided. As 25 is the
preferred runway configuration at Frankfurt Airport, 25 was applied for the
whole day as an approximation for days with a mix of runway configurations.
In order to accomodate the tailwind threshold for departures on RWY18, an
additional boolean wind variable Wt b2 lim/WindInt N lim (the first name
is used in runway configuration independent mode, the latter in runway con-
figuration dependent mode) was introduced. It is assigned the value 1, when
the tailwind component for RWY18 (i.e. northwind) exceeds 10 kts.

Variables with only one entry per day such as fx24, TG24 for RR24 were
kept in this form not creating any statistics. The same holds for TE, ex-
tracting the minimum temperature from the 6UTC entry and the maximum
temperature from the 18UTC entry.

Encoded variables were translated into boolean-type variables using the
encoding tables given in Appendix D.1 to D.3. These variables were assigned
the value 1, if the respective weather event was reported and 0 if not. With
regard to significant weather, six groups of weather events were defined:

1. ww31b: reduced visibility (codes 28, 41-49))

2. ww32b: thunderstorm (codes 13, 17, 29, 91-99)

3. ww33b: precipitation (codes 15-17, 20-27, 29, 50-75, 77, 79-99)

4. ww34b: solid precipitation (codes 22, 23, 26-27, 68-75, 77, 79 , 83-90,
93-94, 96, 99)

5. ww35b: moderate/strong precipitation (codes 52-55, 57, 59, 62-65, 67,
69, 72-75, 81-82, 84, 86, 88, 90-99)

6. ww36b: freezing precipitation (codes 24, 56-57, 66-67)

From the CL-group, four variables were created combining cloud types:

1. CLc1 : cumulus mediocris or congestus (code 2), cumulus and multilevel
stratocumulus (code 8)

2. CLc2 : cumulonimbus (codes 3, 9)

3. CLc3 : stratocumulus (codes 4, 5)

4. CLc4 : stratus or cumulus fractus (codes 6, 7)
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Regarding the state of ground without snow or measurable ice cover, two
groups were formulated:

1. E1 : ground frozen (code 4)

2. E2 : glaze on ground (code 5)

As an alternative, boolean variables were additionally translated into non-
boolean variables, using information on how often the respective event was
reported on a given day. In this regard, a maximum value can be defined
which is then assigned only if the respective event was reported at each of the

Table 2.6: Final set of weather variables for feed in the model equations.

variable description range

P0 mean mean air pressure 950-1050 hPa
VV min minimum visibility 50-70,000m
VV mean mean visibility 50-70,000m
h min minimum height of cloud base 0-2500m
h mean mean height of cloud base 0-2500m
h max maximum height of cloud base 0-2500m
N mean mean total cloud amount 0-8 eighths
N max maximum total cloud amount 0-8 eighths
CLc1 cumulus clouds observed 0/1
CLc2 cumulonimbus clouds observed 0/1
CLc3 stratocumulus clouds observed 0/1
CLc4 stratus or cumulus fractus clouds observed 0/1
U max maximum relative humidity 5-100%
TT mean mean temperature at 2m −30-+40∘C
Ws a mean mean crosswind RWY07/25 0-40m/s
Ws b mean mean crosswind RWY18 0-40m/s
Wt a1 mean mean headwind RWY07 0-40m/s
Wt a2 mean mean tailwind RWY07 0-40m/s
Wt b1 mean mean headwind RWY18 0-40m/s
Wt b2 mean mean tailwind RWY18 0-40m/s
ff mean mean wind speed 0-40m/s
fx24 max maximum wind gust 0-40m/s
RRR mean precipitation amount 24 hours 0-150mm
RR1 max maximum precipitation amount in 1 hour 0-50mm
r1 mean mean precipitation duration per hour 0-60min
E1 ground frozen 0/1
E2 glaze on ground 0/1
SH max maximum height of snow 0-100 cm
ww31b reduced visibility reported 0/1
ww32b thunderstorm observed 0/1
ww33b precipitation reported 0/1
ww34b solid precipitation reported 0/1
ww35b moderate or strong precipitation reported 0/1
ww36b freezing precipitation reported 0/1
Wt b2 lim tailwind limit of 10 kts exceeded on RWY18 0/1
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Table 2.7: Alternative set of wind variables for feed in the model equations.

variable description range

Ws PB mean mean crosswind PRSa 0-40m/s
Ws WB mean mean crosswind RWY18 0-40m/s
Wt head PB mean mean headwind PRSa 0-40m/s
Wt tail PB mean mean tailwind PRSa 0-40m/s
Wt N mean mean northwind 0-40m/s
Wt S mean mean southwind 0-40m/s
Wt N lim tailwind limit of 10 kts exceeded

on RWY18
0/1

aParallel RWY System

24 observation times. A value of zero is assigned when there was no event on
that day. Interim values are evenly distributed. The results of this enhanced
mode are discussed in Section 3.2.4.

At the expense of a considerably larger weather data base, all variables
described above were also created on a six-hour basis, thus dividing each day
into four blocks (0-5:59UTC, 6-11:59UTC, 12-17:59UTC and 18-23:59UTC).
This approach, as already used by Hansen and Bolic (2001), accommo-
dates the fact that certain weather events may have a different impact de-
pending on the time of day. Results of this enhanced mode are discussed in
Section 3.2.9.

After these steps, the obtained weather data base still exhibited a defi-
ciency with regard to their application in a multivariate regression model.
Correlation analysis of all variables showed strong correlations among the
temperature variables. As multivariate regression models are highly sensi-
tive to multicollinearity, the number of temperature related variables had to
be reduced. Using the method of principal component analysis as described
in Markovic et al. (2008), the daily mean temperature TT mean was de-
termined to represent best all temperature related variables. In a last step,
some variables which were, based on meteorological reasoning, considered to
have no obvious impact on punctuality, were a priori removed from the pool
of potential predictor variables. The final set of weather variables for feed in
the model equations is shown in Table 2.6. One should keep in mind that
head- and tailwind components for RWY25 are identical with tail- and head-
wind components for RWY07, and hence redundant. For the enhanced model
version with an application of the used runway configuration xx’ instead of
the physically fixed runway direction xx, runway related wind variables were
replaced by the variables listed in Table 2.7.

The naming conventions as in Tables 2.6 and 2.7 are applied to all further
analyses. With regard to 6-hour block data, endings 1 to 4 are appended to
parameter names to specify the time reference. For example, cumulus clouds
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observed at 8UTC result in CLc2 2 being assigned the value 1. For easy
distinguishing, the naming convention is such that min, mean and max terms
are additionally replaced byMIN,MEAN andMAX terms. For example, the
mean tailwind for RWY07 in the second time block (6-11:59UTC) is labelled
Wt a2 MEAN 2.

2.2.3 AMDAR Wind Data

As an alternative to the boolean variable Hoehenwinde (see Section 2.2.1),
and according to a recommendation taken from Spehr (2003), AMDAR
based wind data was considered as an independent source of information on
upper level winds, potentially replacing the information drawn from the man-
ually managed daily airport logs. The AMDAR concept basically comprises
the use of meteorological information from aircraft equipped with meteoro-
logical measurement systems. In the context of AMDAR, valuable infor-
mation on the state of the troposphere, complementing remote sensing and
radio sounding, is collected during flights through on-board measuring and
recording and subsequent VHF data downlink through use of ACARS. Mete-
orological information is provided for temperature as well as wind speed and
direction. Some aircraft even measure humidity, turbulence and icing. For
our purpose, the focus is on wind information, only. For more information
on AMDAR please refer to WMO (2004), Moninger et al. (2003), Drüe

et al. (2008) or Frey (2006).

AMDAR data for investigation was obtained by the German Weather Ser-
vice (DWD). Unlike SYNOP-weather information, archived AMDAR data
was only available from 2003-2006. As the database contained global infor-
mation, the amount of data provided had to be locally reduced. In a first
conditioning step, data was filtered using a geographical window with bor-
ders 49.5∘N, 50.5∘N, 7.7∘E and 9.3∘E. This window is assumed to represent
the area relevant to operations at Frankfurt Airport, or more precisely on
arrivals at Frankfurt Airport’s parallel runway system RWY07/25. Infor-
mation then extracted was time and position of observation, i.e. latitude,
longitude and altitude (calculated from measured pressure), wind speed and
wind direction. In a second filtering step, observations outside the height
intervall 3000-5000 ft were removed from the dataset as they are not relevant
for approach staggering (see Appendix A). The remaining database contained
approximately 450,000 entries for the the 4-year period. On average, there
were 309 observations per day as a basis for the calculation of relevant pre-
dictor variables. Observations were, however, not evenly distributed over the
day. During nighttimes, there were much less or even no observations as
there were less flights and thus less aircraft reporting. The final set of pre-
dictor variables created from the AMDAR database is shown in Table 2.8.
The boolean variables reflect the thresholds as used in the arrival rate matrix
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Table 2.8: Final set of upper level wind variables for feed in the model equations.

variable description range

max wind maximum wind speed 0-60m/s
max Tangentialwind a head maximum headwind RWY07 0-60m/s
max Tangentialwind a tail maximum tailwind RWY07 0-60m/s
max wind ge15 maximum wind speed ≥ 15 kts 0/1
max wind ge25 maximum wind speed ≥ 25 kts 0/1
max wind gt35 maximum wind speed > 35 kts 0/1
max Tangentialwind a head ge15 maximum headwind RWY07 ≥ 15 kts 0/1
max Tangentialwind a head ge25 maximum headwind RWY07 ≥ 25 kts 0/1
max Tangentialwind a head gt35 maximum headwind RWY07 > 35 kts 0/1
max Tangentialwind a tail ge15 maximum tailwind RWY07 ≥ 15 kts 0/1
max Tangentialwind a tail ge25 maximum tailwind RWY07 ≥ 25 kts 0/1
max Tangentialwind a tail gt35 maximum tailwind RWY07 > 35 kts 0/1

(see Appendix A). Again, one should keep in mind that head- and tailwind
components for RWY25 are identical with tail- and headwind components
for RWY07 and hence redundant.

Like with the predictor variables created from the SYNOP database for
an enhanced model stage, boolean variables were additionally translated into
non-boolean variables, using information on how often the respective event
was reported on a given day. The procedure is as described on page 35. Also,
6-hour block variables were created for an enhanced model stage as described
in Section 2.2.2. For upper level wind variables the naming convention is
such that suffixes 1 to 4 are appended, representing the four different time
blocks. In that respect it should be mentioned that for the first time block
(0-5:59UTC), there is less data (on average 34 observations) available than
for the other time blocks (on average 85-100 observations per block) and the
data basis thus is very sparse. For 25 days, there was even no information
available. Values were then linearly interpolated using data from the previous
and the following day.

2.2.3.1 AMDAR Data versus Daily Logs: A short Analysis

Within this short section, the quality of AMDAR data is discussed with fo-
cus on its potential to replace information on upper level winds drawn from
the daily airport logs. The advantage of AMDAR data as compared to the
variable Hoehenwinde, drawn from the daily airport logs, clearly is that it
is independent in that sense that it is not prestressed by a manual selection
process deciding for or against putting a note in the daily logs. Additionally,
AMDAR based predictor variables are created in such a way that prognostic
input can potentially be drawn from numerical weather forecasting models
(NWFM), possibly upgraded by model output statistics (MOS), and thus be
used in a punctuality forecasting system. A disadvantage of AMDAR based
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variables is the low number of observations it is based on. Compared to the
daily number of movements at Frankfurt Airport, the number of AMDAR
messages is low, considering that the average number of roughly 300 mes-
sages per day comes from only a fraction of aircraft arriving at or departing
from Frankfurt Airport. This due to the fact that only a limited number of
AMDAR equipped aircraft is chosen for further processing of meteorological
data, satisfying special DWD needs with regard to data quality as well as
spacial and temporal resolution. As an alternative to AMDAR data, wind
profiler soundings could be used to obtain information on upper level winds.

In the following, AMDAR based variables are analysed and compared to
information drawn from the daily airport logs. It is assumed that entries in
the daily logs, i.e. a note on the occurrence of strong upper level winds, reflect
the true state of the atmosphere with strong upper level winds prevalent on
the respective day. When there is no log entry for a certain day, it is assumed
that no strong upper level winds were prevalent. Of course it is difficult to say
which data source really tells the truth – airport logs or AMDAR. However,
entries in the daily logs are a rather reliable indicator that strong upper level
winds in fact had a measurable impact on operations, be it through pilot
reports or attestable interventions by local ATC.

It is now analysed how well variables drawn from the AMDAR data base
do reflect days with and without strong upper level winds, provided that daily
logs tell the truth. For investigation, the AMDAR based variables max wind
and max wind gt35kt were consulted. As quality measures, the probability
of detection (POD), the false alarm rate (FAR), sometimes also referred to
as false alarm ratio, and the total hit rate (THR) were used as defined in
Wilks (1995). Using the following notation:

H : Hit ⇒ here: log entry & AMDAR signal
F : False ⇒ here: no log entry & AMDAR signal
M : Missed ⇒ here: log entry & no AMDAR signal
Z : Zero ⇒ here: no log entry & no AMDAR signal
N : Total number of observation days (H + F +M + Z)

, the measures are calculated as:

POD =
H

H +M
(2.1)

FAR =
F

H + F
(2.2)

THR =
H + Z

N
(2.3)

Here, POD is the fraction of days, when AMDAR based wind variables indi-
cated strong upper level winds and airport logs supported these events. Given
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that log entries tell the truth, a POD value of 1 would be the best and a POD
value of zero the worst scenario. FAR, by contrast, is the fraction of days,
when AMDAR based wind variables indicated strong upper level winds, but
airport logs did not support this claim. Optimal FAR values would thus be
close to zero. THR is simply the fraction of events or nonevents supported
by both daily logs and AMDAR based wind variables. A high THR is to
be interpreted carefully as it credits H and Z equally and is thus strongly
influenced by the more common category (ECMWF, 2007).

Using max wind gt35kt for the analysis, the POD as defined above is
0.70. That means, in 70% of all cases when there was an entry in the
daily logs on strong upper level winds, max wind gt35kt also gave a positive
signal. THR is at 0.80. However, the high FAR value of 0.64 points out that
upper level winds exceeding the 35 kts threshold do not necessarily result
in operations being disturbed to an extent that it is to be reported in the
daily logs. Obviously, operations can, under certain circumstances, also run
rather smoothly when strong upper level winds are prevalent. It is, in that
context, not assured that daily logs are exhaustive. It is thinkable that log
incompleteness is to be blamed for the relatively bad agreement of the two
databases, either due to unconsidered combinations of weather events beeing
responsible for operation disruptions (e.g. high wind and low visibility) or
simply due to heterogeneous log accounting.

Usingmax wind as AMDAR based variable and screwing up the threshold
to wind speeds larger than 35 kts, generally results in FAR values decreasing,
however, at the expense of deteriorating POD values. Screwing down the
threshold wind speed gives the opposite effects. For example, using a thres-
hold wind speed of 15 kts results in a POD of more than 0.99, bought dearly
with a FAR of 0.86. The findings of this analysis are discussed in Section
3.2.5 in the context of punctuality modelling.

2.3 Theoretical Approach

Within this section, the methods used for punctuality modelling are intro-
duced. In that respect, the main focus is not on a detailed description of the
mathematical methods themselves, as they are well known and illustrated in
many textbooks, but on the successive composition of the hybrid model with
focus on configuration and internal interaction.

2.3.1 Multivariate Linear Regression

Multivariate linear regression constitutes the core of the punctuality mod-
elling approach. The method shall only be shortly described to make the
reader familiar with the mathematical background. For a deeper insight in
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multivariate regression, refer to e.g. Backhaus et al. (2003), Weisberg

(1985) or Wilks (1995).

In our case of modelling total daily punctuality TOTP , i.e. determin-

ing an estimate T̂OTP , a simple multivariate linear regression model is
described by the following equation:

T̂OTP = X ⋅ �̂ + � , (2.4)

with X being the n×(k+1) matrix of predictors as described in the previous
sections (often referred to as ”design matrix”), having k different predictor
variables arranged in columns and n observations of these predictors arranged
in rows, and �̂ being the (k + 1) × 1 vector of predictor coefficients to be
determined. The matrix of predictors initially contains a first column of ones,
representing the constant term, to accommodate the variation of TOTP

around its mean value. Without good reason for doing so, this column of
ones should not be removed from the model equation. The n × 1 vector

� represents the residuals TOTP − T̂OTP for each observation, i.e. the
difference between observed and estimated punctualities. Using ordinary
least squares (OLS), �̂ is determined by:

�̂ =
(

XTX
)−1

XT
TOTP (2.5)

This OLS estimate minimizes the residual sum of squares �T�. The difficulty
now is to find the right set of predictor variables out of the pool of potential
predictors. For reduction in the number of predictors, backward selection,
respectively backward elimination was applied as described in Weisberg

(1985), consulting t-statistics and F-statistics. Under the null-hypothesis
H0: �i = 0, i.e. that the coefficient for predictor variable i, is zero, t-values
(non-boolean variables) respectively F-values (boolean variables) were com-
puted for each predictor variable. t-values respectively F-values could then
be translated into p-values, giving the conditional probability of observing t-
/F-values as large or even larger than the observed value, given that the H0 is
true. In that respect, it should be kept in mind that large t-/F-values would
speak for a (in this case wrong) rejection of the null-hypothesis. Thus, small
p-values provide evidence against the null-hypothesis H0: �i = 0 (Weisberg,
1985).

The backward elimination procedure starts with the complete set of pre-
dictors with initial coefficients �i, stepwise eliminating the variable with the
highest p-value associated with its t- respectively F-value. After each re-
moval step, the �-coefficients are again estimated on the basis of the new
model. The elimination procedure stops when all variables left in the model
exhibit associated coefficient p-values smaller than a fixed significance level
�. Generally used are significance levels of � = 0.05 or � = 0.01.
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When the set of relevant predictors is found, hence the final design ma-
trix Xfinal is determined, the significance of the relation between the set of
predictor variables and the predictant (TOTP) is to be tested globally, i.e.
it is tested if the model is statistically significant and thus generally valid.
In that respect it is tested if all �i are non-zero. Follwing Backhaus et al.
(2003), the null-hypothesis claims that all �i are zero. The empirical F-value
is calculated as:

Femp =
R2/k

(1−R2)/(N − (k + 1))
, (2.6)

with N being the number of observations, k being the number of independent
variables and k+1 being the number of coefficients to be determined (i.e. the
number of predictants counting the constant). The empirical F-value can
either be compared with F-tables giving the theoretical F-values for a given
significance level or it can again be translated into a p-value. For example, a
p-value of 0.05 means that the level of significance is 5%, i.e. that in 5% of
all cases the null-hypothesis is misleadingly rejected (and thus a statistically
significant model is assumed) when the null-hypothesis is actually true.

2.3.2 Regression Trees

This section is dedicated to regression trees as introduced by Breiman et al.
(1984). The name regression tree originates from its visualisation using a tree
structure with branches representing bifurcations and terminal nodes, called
leaves, representing final value assignment. From a mathematical point, re-
gression trees are simply a set of decision rules obtained by an iterative error
minimizing procedure. Regression trees allow for the use of numerical as
well as categorical variables in the matrix of predictors. They are easy to
interpret, both for analysis and prediction purposes. For illustration, Figure
2.9 shows an example of a regression tree. In this example, moving down
the tree, one exemplarily obtains an average TOTP of 0.76 if snow height
is larger than 5 cm, visibility higher than 1 km and wind speed smaller than
15 kts.

In the following, the CART-algorithm developed by Breiman et al.
(1984) is shortly described. According to this work, which was ground-
breaking in the field of regression tree modelling, there are three elements
necessary to construct a regression tree:

1. a way to select a split at every intermediate node

2. a rule for determining when a node is terminal, i.e. when it becomes a
leaf

3. a rule for assigning a value ŷ to every terminal node

The difficulty in the construction of regression trees is to find the right set of
splits, i.e. splits which most successfully separate the high predictant values
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Figure 2.9: A simple example of a regression tree using weather variables as predictors
and TOTP as predictant. Leaves are labelled with assigned punctualities, which are the
average of punctualities for the respective leaf.

from the low ones, thus minimizing the total regression error rate. In that re-
spect, a classical measure of accuracy for regression trees is the resubstitution
estimate of the tree T :

R(T ) =
1

n

n
∑

i=1

(yi − ŷi)
2 =

1

n

∑

t∈ T

∑

i ∣Xi∈ t

(yi − ȳ(t))2 (2.7)

The second alternative in Equation 2.7 makes uses of the definition:

ȳ(t) =
1

n(t)

∑

i ∣Xi∈ t

yi , (2.8)

where t denotes a terminal node t and ȳ is the average value of all cases falling
into that node t. Accordingly, the resubstitution estimate for any node t is:

R(t) =
1

n

∑

i ∣Xi∈ t

(yi − ȳ(t))2 (2.9)

Using this definition, the best split s∗ of all splits s of a node t into a left
node tL and a right node tR is the one maximizing:

ΔR(s∗, t) = max
s∈S

ΔR(s, t) , (2.10)

with S representing all possible splits and ΔR(s, t) defined as:

ΔR(s, t) = R(t)−R(tL)−R(tR) (2.11)
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The splitting works such that at each node the tree algorithm searches
through the set of predictor variables, starting with the first one and con-
tinuing up the the last one, finding the best split for each predictor. Out of
the best split for each predictor, it finally selects the overall best split. The
splitting procedure as described above continues until each terminal node
contains at maximum Nmax cases. Breiman et al. (1984) propose to ini-
tially grow large trees – at maximum to a point where terminal nodes are
either pure or contain only one single case. We followed the latter approach.

Trees grown applying the above algorithm can become rather large. In
the context of generalisability, this is of course not appropriate. Such trees
are heavily overfitted and just able to reproduce their learning sample, albeit
perfectly, but at the expense of poor performance when applied to indepen-
dent data. Hence, it is inevitable to prune trees down to a point where pre-
dictability balances misclassification, respectively error rate. Breiman et al.
(1984), therefore, introduced a minimal error-complexity pruning procedure.
Introducing a complexity parameter �, error-complexity is then defined as:

R�(T ) = R(T ) + � ∣T̃ ∣ , (2.12)

with T̃ being the set of terminal nodes and ∣T̃ ∣ being the number of terminal
nodes of the tree T . R� thus is burdened with a loading depending on the
size of the tree. The higher � becomes, the more the loading and the smaller
the minimal error-complexity tree to be picked. For a detailed description
of the whole pruning procedure refer to Breiman et al. (1984). For our
purpose, it is important to note that error-complexity pruning starts with
the maximum grown tree, successively pruning branches to terminal nodes
on the basis of v-fold (generally 10-fold) cross-validation. A major reason
for growing a maximum tree and then pruning it again, especially as an
alternative to growing smaller trees with more cases per terminal node, at
the outset, is that there may be nodes where splitting only leads to a small
decrease of error rate, but where splits of descendant nodes might offer a
significant decrease of error rate. Hence, by stopping the splitting procedure
too early, potentially good splits might be unused.

In the present studies, basic construction of regression trees was accom-
plished using the Matlab Statistics toolbox algorithm classregtree, which is
based on mathematical concepts formulated by Breiman et al. (1984). Prun-
ing of maximum grown trees was done with Matlab’s test and prune algo-
rithms, forcing for a fixed final number of terminal nodes. This was necessary
since it turned out that only using the built-in crossvalidation procedures led
to extremely unstable pruning results with a maximum difference in proposed
pruning steps of up to 15 steps, heavily depending on the random choice of
samples used for crossvalidation. This would result in trees of varying size
and leaf number. In terms of stability and reconstructability of trees, this
was not acceptable. The use of a fixed final number of terminal nodes is thus
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recommended. A limit of 28 terminal nodes proved to be most efficient and
was thus used for tree pruning.

2.3.3 AR-Processes

AR models exploit time series information on variable autocorrelation to ex-
trapolate a variable of interest. Following e.g. Bamberg and Baur (1998) or
Hipel and McLeod (1994), AR(p)-processes are described by the equation:

yt − � = Φ1 (yt−1 − �) + Φ2 (yt−2 − �) + . . .+ Φp (yt−p − �) + �t , (2.13)

with y being the variable of interest at time t, � being the mean of y, Φi

being AR-parameters to be determined and �t being white noise at time t.
In an enhanced model stage (see Section 3.2.11), the linear regression model
is upgraded using an additional AR(1) modelling term. This combined model
is referred to as linear statistical model with first-order autoregressive error
correction (Judge et al., 1988).

In our case, not the dependent variable TOTP itself but the error term

�, i.e. TOTP − T̂OTP , is modelled using an AR model. In the following,
we consider an AR(1) processes only, as we postulate that TOTP on day i
is only affected by TOTP on day i− 1. This postulation is supported by the
autocorrelation of TOTP as shown in Figure 2.7 and by the rationale given
in Section 2.1.4. Keeping in mind that �̄ is assumed to equal zero, equation
2.13 hence translates into:

�t = � �t−1 + �t , (2.14)

with � = Φ1 being the lag-1 autocorrelation coefficient of �. The regression
model with first-order autoregressive error then becomes:

T̂OTP t = X t ⋅ �̂ + � �t−1 + �t (2.15)

2.3.4 Model Quality Measures

In the following, quality measures used for later evaluation of different model
setups are introduced. Again, estimated values are labelled by a hat.

A commonly used quality measure in regression modelling is the coeffi-
cient of determination. It is defined as:

R2 =

∑n

i=1 (ŷi − ȳ)2
∑n

i=1 (yi − ȳ)2
= 1−

∑n

i=1 (yi − ŷi)
2

∑n

i=1 (yi − ȳ)2
(2.16)

The response variable y is in our case given by TOTP . In the first case, R2 is
defined as explained variability to total variability, in the second case as one
minus non-explained variability to total variability. An alternative definition
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(see Judge et al., 1988) of the coefficient of determination is via the square
of the multiple correlation coefficient r:

R2 = r2 =

⎛

⎝

∑n

i=1 (yi − ȳ)
(

ŷi − ¯̂y
)

√

∑n

i=1 (yi − ȳ)2
∑n

i=1

(

ŷi − ¯̂y
)2

⎞

⎠

2

(2.17)

R2 thus always ranges between 0 and 1, with values close to 1 indicating a
nearly perfect model and values close to 0 indicating a rather useless model.
The latter definition of R2 is preferable to Equation (2.16) as it gives correct
R2 values both for calibration and independent data. In order to accommo-
date the fact that adding more and more predictors to the model equations
results in non-decreasing diagnostic R2 values, a corrected R2, called adjusted
R2, was introduced according to Judge et al. (1988):

R2
adj = 1−

(

1−R2
)

⋅
n− 1

n− (k + 1)
, (2.18)

with k+1 being the number of �-coefficients to be determined, including the
one for the constant. Additional quality measures used are the mean absolute
model error MAE :

MAE = mean(∣y − ŷ∣) , (2.19)

which gives the average deviation of the predicted values ŷ from the true
values y, the root mean square error RMSE :

RMSE =

√

√

√

⎷

1

n

n
∑

i=1

(yi − ŷi)
2 (2.20)

and the standard error of regression (see Backhaus et al., 2003):

SE =

√

∑n

i=1 (yi − ŷi)
2

n− (k + 1)
(2.21)

which is closely related to RMSE and only scaled differently, using n and k
as defined above. Both RMSE and SE are good measures of accuracy. They
differ from MAE in that sense that outliers are more emphasised through the
squaring of residuals.

2.3.5 Hard- and Software Environment for Implemen-
tation

Punctuality modelling as described in the previous sections was done on
a Windows XP Intel Pentium IV system using Matlab R2008b, version
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7.7.0.471 as programming environment. Reading and pre-processing of AM-
DAR data was done on a Linux (openSUSE 10.2-64 / SLES 9) dual core
Intel Xeon machine using Fortran 90/95 and shell scripts. The set up of
the AR-module and the implementation of the MLR-module into a Matlab-
environment was done by Danijela Markovic in the frame of the European
FLYSAFE project (see also Markovic et al., 2008; Theusner and Röh-

ner, 2008).
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Chapter 3

Results

In this chapter the results of the punctuality modelling are presented, starting
from a baseline model to the point of the final hybrid model, detailing several
enhancement steps. Mathematical methods applied are described in Section
2.3.

3.1 Preliminary Investigations

Before discussing the model results, a preliminary analysis of days with low
punctualities is presented in this section. These investigations are later con-
sulted for the construction of regression trees, which constitute an important
component in the enhanced punctuality models introduced in Section 3.2.12.

As will be shown in Section 3.2, punctuality modelling using multivariate
linear regression, optionally enhanced by an AR(1)-model, generally gives
good results for days with punctualities higher than roughly 0.50. Days with
a punctuality less than 0.50 are in the following referred to as low punctuality
days. For general understanding and later construction of special regression
trees, an analysis of prevalent weather on low punctuality days was done.
Roughly 80 weather related criteria were created using the weather vari-
ables introduced in Sections 2.2.2 and 2.2.3. As an example, one of these
criteria is e.g. related to a special combination of solid precipitation and
sub-zero temperatures. A question to be posed would, accordingly, be. ”Was
solid precipitation observed and the mean temperature below 0∘C on day x?”
Cross table 3.1 presents the results of the analysis. Entries in the table are
ordered by the average TOTP on eventdays (2nd column), i.e. days where
criterion xy was fulfilled. The first column lists the criteria, which were
chosen based on operational thresholds and meteorological experience, using
the notation introduced in Sections 2.2.2 and 2.2.3. It is complemented by
wind variables Wt x mean and max Tangentialwind x absolute *, represent-
ing tangential winds in x-direction (i.e. not distinguishing between head- and
tailwind), where ”* ” represents one of the suffixes introduced.

49
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Table 3.1: Prevalent weather on low punctuality days. Notations introduced in Sections
2.2.2 and 2.2.3 are used. The second column gives the average TOTP on the ”cases” (first
column) eventdays. Column ”%cases” gives the fraction of eventdays with TOTP<0.5 to
the total number of eventdays. Column ”% l-cases” gives the fraction of eventdays with
TOTP<0.5 to the total number of days with TOTP<0.5.

weather criterion cases ∅TOTP %cases % l-cases

h mean<30m 3 0.39 100.00 3.16
SH max>8 cm 14 0.45 50.00 7.37
VV mean<2000m 5 0.45 60.00 3.16
Wt b2 mean/Wt N mean>5m/s 20 0.52 55.00 11.58
ww31b>0 & max wind gt35>0 13 0.53 46.15 8.57
Ws a mean/Ws PB mean>5m/s 29 0.56 37.93 11.58
Wt a1 mean>5m/s 2 0.58 0.00 0.00
fx24 max>25m/s 4 0.58 50.00 2.11
VV min<300m & h min<30m 20 0.58 25.00 5.26
VV min<300m 21 0.59 23.81 5.26
ff mean>7m/s & max wind>25m/s 27 0.59 29.63 11.43
ww36b>0 & TT mean<0∘C 8 0.60 25.00 2.11
VV min<300m & max wind gt35>0 3 0.60 33.33 1.43
ww34b>0 & TT mean<0∘C 98 0.62 25.51 26.32
ww36b>0 12 0.63 16.67 2.11
max Tangentialwind a head gt35>0 14 0.63 21.43 4.29
ff mean>7m/s 60 0.63 21.67 13.68
ww31b>0 & h min<30m 84 0.63 17.86 15.79
Wt b mean>5m/s 121 0.63 20.66 26.32
ww31b>0 91 0.64 17.58 16.84
r1 mean>45min 19 0.65 26.32 5.26
Wt b1 mean/Wt S mean>5m/s 98 0.66 14.29 14.74
max Tangentialwind a tail>25m/s 80 0.66 12.50 14.29
max Tangentialwind a absolut>25m/s 81 0.66 12.35 14.29
max wind>25m/s 109 0.66 14.68 22.86
ww34b>0 236 0.66 16.10 40.00
max Tangentialwind b head gt35>0 28 0.67 17.86 7.14
max Tangentialwind b absolut gt35>0 58 0.67 15.52 12.86
E2>0 17 0.68 17.65 3.16
RR1 max>5mm 51 0.68 11.76 6.32
max Tangentialwind b tail gt35>0 30 0.68 13.33 5.71
TT mean<0∘C 185 0.68 16.22 31.58
max Tangentialwind a absolut gt35>0 276 0.68 13.04 51.43
h min<30m 168 0.69 13.10 23.16
max Tangentialwind a tail gt35>0 262 0.69 12.60 47.14
Wt a mean>5m/s 96 0.69 12.50 12.63
Wt head PB mean>5m/s 96 0.69 12.50 12.63
Wt a2 mean>5m/s 94 0.69 12.77 12.63
TG mean<0∘C 230 0.69 14.35 34.74
Ws b mean/Ws WB mean>5m/s 48 0.69 12.50 6.32
max wind gt35>0 363 0.70 11.29 58.57
P0 mean<990 hPa 125 0.70 7.20 9.47
max Tangentialwind b tail ge25>0 151 0.70 9.93 21.43

to be continued on next page
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continued from last page

Wt b2 lim/Wt N lim>0 230 0.71 10.00 24.21
max Tangentialwind a head ge25>0 120 0.71 8.33 14.29
ww35b>0 617 0.71 8.75 56.84
max Tangentialwind a absolut ge25>0 623 0.71 8.67 77.14
max Tangentialwind a tail ge25>0 506 0.71 8.70 62.86
TT min<0∘C 413 0.72 10.17 44.21
max Tangentialwind b absolut ge25>0 325 0.72 8.00 37.14
max wind ge25>0 871 0.73 7.23 90.00
ww32b>0 186 0.73 6.45 12.63
RRR>0mm 1019 0.73 6.48 69.47
E1>0 244 0.73 8.61 22.11
max Tangentialwind b head ge25>0 183 0.73 7.65 20.00
max Tangentialwind b tail ge15>0 514 0.73 7.39 54.29
TG min<0∘C 542 0.74 8.30 47.37
CLc2>0 433 0.74 4.62 21.05
max Tangentialwind a tail ge15>0 800 0.74 6.63 75.71
TG24 min<0∘C 605 0.74 7.60 48.42
ww33b>0 1387 0.74 5.84 85.26
max Tangentialwind b absolut ge15>0 982 0.74 6.11 85.71
max Tangentialwind a absolut ge15>0 1136 0.74 5.99 97.14
max Tangentialwind b head ge15>0 566 0.74 5.48 44.29
max Tangentialwind a head ge15>0 378 0.75 4.50 24.29
max wind ge15>0 1325 0.75 5.21 98.57
max Tangentialwind b head>25m/s 2 0.78 0.00 0.00
max Tangentialwind b absolut>25m/s 6 0.79 0.00 0.00
max Tangentialwind b tail>25m/s 4 0.80 0.00 0.00
ww31b>0 & Wt b2 lim>0 2 0.81 0.00 0.00
max Tangentialwind a head>25m/s 1 0.87 0.00 0.00

end of table

Not all of the criteria listed shall be discussed in detail. Generally, looking
at average punctualities connected to the events, it shows that there are only
few events with an average TOTP below 0.5, giving strong evidence that
they are at least involved in processes generating delays. However, many of
the events with related average TOTPs larger than 0.5 might later be used
to enhance the punctuality models by applying regression trees, building on
these sub-datasets. Table 3.1 can be seen from two sides. Looking at col-
umn ”%cases”, one can see, how many eventdays in fact had a TOTP -value
lower 0.5, compared to the total number of eventdays. High values indicate
that the respective events are rather pure in the sense of low punctualities.
For example, using a daily mean ceiling lower than 30m as a criterion, all
cases observed implied a TOTP of less than 0.5. As one might expect, also
snow cover (SH max>8 cm), low visibility conditions (VV mean<2000m,
VV min<300m), strong winds (Wt b2 mean/Wt N mean>5m/s,Ws a me-
an/Ws PB mean>5m/s, fx24 max>25m/s) or combinations of low ceiling
and visibility, visibility and strong winds or solid/freezing precipitation at
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Figure 3.1: Prevalent weather on low punctuality days. The x-axis gives the percental
fraction of eventdays with TOTP<0.5 to the total number of days with TOTP<0.5. The
left-hand labelling gives the general weather category, the right-hand labelling the exact
criterion to be fulfilled using the proposed notation.

sub zero temperatures have a strong impact.

The other view on Table 3.1 is when focus is on column ”% l-cases”. This
column tells something about the weather prevalent on low punctuality days.
For example, when again looking at days with a mean ceiling lower than
30m, the value of 3.16% means that 3.16% of the 95 days with TOTP<0.5
(in 2001-2006) fulfilled the criterion ”h mean<30m”. The values given in
column ”% l-cases” should be interpreted carefully and only in combination
with column ”%cases”. Solely on the basis of the last column, one should
not conclude that high values with respect to a certain event are an indicator
for a strong impact on punctuality. Precipitation (ww33b>0), for example,
exhibits an l-case value of 85,26%, which means that on far more than three
quarters of all days with TOTP<0.5 this criterion was fullfilled. However,
on 1387 − 81 = 1306 precipitation days, total punctuality was larger than
0.5. Thus, ”ww33b>0” is fullfilled on more than 50% of all days. This other
side of the coin is reflected in a low ”%cases” value of 5.85. Figure 3.1 gives a
summarizing overview over a selection of basic weather events on low punc-
tuality days. Again, it shows that precipitation is almost always present on
low punctuality days, followed by strong winds and frost/ground frost. The
reason why other, intuitively obvious impact events, such as thunderstorms
or low visibility, only exhibit low ”l-cases” values, is that they are simply
rather seldom, compared to a general precipitation event.



3.2. MODELLING RESULTS 53

3.2 Modelling Results

In the following sections, results from different model stages and setups are
presented. Different model stages are in the following referred to as Model x.
The work approach is such that each model stage is shortly introduced, based
on the previous model setup where applicable. Results are discussed with
special focus on performance on independent data. An overview table of
model quality criteria for different model stages is given in Appendix B.3. A
difficulty in terms of comparability of different model setups is that using the
backward elimination scheme as described in Section 2.3.1 with different sets
of potential predictor variables generally leads to a different choice of final
predictors. Most notably, the number of final predictor variables is likely to
vary, as well.

In order to make model results from different model stages comparable,
a fixed set of predictor variables is determined for each model setup, setting
a limit of 20 predictors. By claiming this requirement, another procedural
deficiency is remedied. Only using one model run for the determination
of the final set of predictors, one runs the risk of not finding the optimal
set of predictors, but one that just works best for the calibration period.
However, only changing the calibration period slightly may result in heavily
differing predictor choices. Hence, as focus is on good model performance
on independent data, it is essential to determine a quasi-fixed set of global
predictor variables in order to increase model generalisability. Quasi-fixed is
meant in the sense of ”fixed for each model setup”.

A set of predictors is in the following determined for each model setup,
moving a window of 1 year, 3 years and 5 years over the 6-year data set.
At each window step, the set of predictors is determined using the backward
selection scheme with a requested significance level of � = 0.05, as described
above. Counting the number of selections for each potential predictor and
calculating the respective percentage as compared to the maximum possible
selections (i.e. for e.g. the 1-year window 1827 selections are at maximum
possible in a 6-year period) generates a ranking among the predictors. The
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Figure 3.2: Process flow for model calibration and validation.
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three rankings from the three different window lengths are finally merged
and used to determine the 20 most selected predictors, which then consti-
tute the fixed set of predictor variables for the respective model. This set of
predictors is finally used to determine the diagnostic as well as the prognos-
tic model performance. The terms ” diagnosis” and ”diagnostic” are in the
following used for model application with calibration data. When a model
is applied to independent data, the terms ”prognosis” and ”prognostic” are
used, accordingly. This will, in the following, also be referred to as ”valida-
tion”. The term ”forecast” is, in the present study, used in the context of a
punctuality forecast for a day in the future. Punctuality forecast is discussed
in Section 3.3. For general model development and visualisation of model
improvements, data for the period 2001-2005 is used for model calibration.
The year 2006 is reserved for model validation. Figure 3.2 illustrates the
calibration and validation process flow.

3.2.1 Model 1 – Rudimentary Baseline Model

In this section, a rudimentary pre-baseline model is introduced. This model
uses weather variables from ground observations, as described in Section
2.2.2, only. The mathematical basis is pure multivariate linear regression with
normalised predictors. As described in Section 3.2, the calibration period is
2001-2005 and the year 2006 is used for validation. This model represents the
minimum model and is only to be used as a reference. Interpretation of model
coefficients is not advisable as important predictor variables are intentionally
omitted and model coefficients are thus biased, bearing the weight of non-
included predictors.

Table 3.2 lists the fixed set of predictors for this model, i.e. the 20 pre-
dictors chosen using the procedure described in Section 3.2. The numbers in
brackets are the percentage of selections within the 1-year, 3-year and 5-year
windows, respectively. The numbers given in bolt represent the maximum
value from the three windows.

Table 3.3 compares experimental diagnostic model results, using the mov-
ing 1-year, 3-year and 5-year windows. Results are given for two modes: 1)
automatic model calibration at each time step, using the backward selection
scheme, 2) using the fixed set of predictors summarised in Table 3.2. In the
first mode, there are large deviations in the number of selected predictors.
Taking the 1-year window, the range is from 6 to 18 variables. Also R2

adj

exhibits strong variability with values between 0.274 and 0.555. Looking at
the 3- and 5-year windows, one recognises a clear tendency of decreasing vari-
ability, i.e. both R2

adj values and the number of predictors selected exhibit a
more narrow range. This indicates that longer calibration periods generally
result in more stable modelling results. The second important point is that
using the fixed set of predictors leads to similar R2

adj values as in automatic
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Table 3.2: Fixed set of predictors for Model 1. The numbers in brackets are the percent-
age of selections for the moving 1-year, 3-year and 5-year window.

predictors

const (100, 100, 100) CLc2 (32.4, 81.6, 100)
ww31b (97.9, 100, 100) Wt b2 lim (27.9, 44.4, 100)
SH max (95.6, 99.7, 100) N mean (7.1, 53.0, 99.2)
E1 (75.0, 100, 100) CLc1 (17.6, 41.7, 98.1)
r1 mean (63.0, 90.4, 100) ww32b (29.6, 27.9, 93.7)
Wt a1 mean (52.9, 99.9, 100) VV mean (25.1, 62.4, 93.2)
ww34b (49.1, 87.4, 100) Ws a mean (67.5, 46.3, 0)
Ws b mean (41.2, 68.0, 100) TT mean (27.9, 29.5, 67.5)
ff mean (36.1, 35.5, 100) Wt a2 mean (38.2, 61.8, 0)
h mean (33.7, 98.7, 100) Wt b1 mean (37.5, 32.8, 0)

Table 3.3: Diagnostic model results for Model 1 using a moving 1-year, 3-year and 5-year
window. Minimum, mean and maximum values of R2

adj and the number of selected predic-
tor variables (Nvar) are given, both for automatic model calibration using the backward
selection scheme (auto) and the fixed set of predictors taken from Table 3.2.

1 year 3 years 5 years
auto fixed auto fixed auto fixed

min
R2

adj 0.274 0.228 0.293 0.285 0.356 0.355

Nvar 6 19 12 20 16 20

mean
R2

adj 0.418 0.404 0.391 0.389 0.378 0.377

Nvar 12 20 16 20 18 20

max
R2

adj 0.555 0.553 0.473 0.467 0.389 0.389

Nvar 18 20 20 20 19 20

mode, where the backward selection scheme is applied at every time step.
Noteworthy that the fixed-set results are achieved with a consistently higher
number of predictors. The reason for having a minimum of only 19 predic-
tors in the 1-year windows using the fixed set of predictors is that also here
variables were skipped if there were less than 5 observations in the inves-
tigation period. The last note to make is that the tendency of R2

adj values
decreasing with larger windows should not be overrated. This is a typical
diagnostic pattern as shorter time series can simply be better reproduced by
the method.

Table 3.4 gives the final results of the model, both in diagnostic and
in prognostic mode, using 2001-2005 as the calibration period and 2006 for
validation. The mean absolute error MAE is lower than 0.1 for both modes,
with smaller values in the diagnostic mode. The last pattern also holds for
the RMSE and the SE . R2 is around 0.37 and slightly higher in prognostic
mode. The R2

adj of 0.358 in diagnostic mode accounts for the inclusion of the
20 predictor variables and is thus slightly lower than R2. The whole model
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Table 3.4: Quality criteria for Model 1.

quality criterion diagnostic prognostic

MAE 0.066 0.081
RMSE 0.092 0.115
SE 0.093 0.118
rmultiple 0.604 0.610
R2 0.365 0.372
R2

adj 0.358 /
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Figure 3.3: Time series of TOTP, TOTPF and the model error for Model 1. Dashed
lines give twice the standard deviation of TOTP.

is significant on the 2.29× 10−13 level, running a global F-test.

Figure 3.3 shows the time series of TOTP and TOTPF for the validation
period (2006). In the lower part of the graph the model error TOTP −
TOTPF is shown. The dashed lines give twice the standard deviation of
TOTP. Even this simple model can explain a lot of the variability in TOTP,
as already shown in Table 3.4. Generally, low and high punctuality pattern
are well recognised in TOTPF and trends reflected. The largest deficiency of
this model is its inability to reflect extremely low punctualities. This is also
found again in the scatterplot of TOTP and TOTPF , shown in Figure 3.4.
There is a clear tendency of the model to overestimate punctuality on days
with TOTP < 0.6. Days with high punctualities are, on the other hand,
generally well reflected.

3.2.2 Model 2 – Variable Transformations

Often, a predictor and the predictant exhibit a nonlinear relationship. Hori-
zontal visibility, for example, is likely to be related to TOTP in a nonlinear
way. Clearly, a decrease from 1.5 to 0.5 km has another impact on air traffic
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Figure 3.4: Scatterplot of TOTP and TOTPF for Model 1.

Table 3.5: Nonlinear predictor variable transformations used (Backhaus et al., 2003).

transformation function f(x) validity predictor suffix

logarithm ln(x) x > 0 log
exponential exp(x) −∞ - ∞ exp
reciprocal 1/x x ∕= 0, here: x > 0 1/x

radical
√

(x) x ≥ 0 sqrt
power 2 x2 here: x ≥ 0 ˆ2
power 3 x3 here: −∞ - ∞ ˆ3
power 4 x4 here: x ≥ 0 ˆ4

and airport operations than one from 52 to 51 km. A logarithmic or recipro-
cal transformation, for example, is hence likely to improve modelling results.
Model 2, therefore, allows for the use of nonlinear predictor variable transfor-
mations, as described in Backhaus et al. (2003). This method accounts for
nonlinear relationships between predictors and the predictant TOTP. Non-
linear transformations used in this approach are listed in Table 3.5. Suffixes
appended to predictor denotation after transformation are also given. For
example, transforming a hypothetic predictor xi to x

′
i = f(xi), using one of

the proposed tranformations, Equation 2.4 becomes:

T̂OTP t = �̂0 + x1,t ⋅ �̂1 + . . .+ x′i,t ⋅ �̂
′
i + . . .+ xk,t ⋅ �̂k + �t (3.1)

, with �̂′
i beeing the coefficient of x′i to be estimated. Equation 3.1 is still

linear, but the nonlinear relationship between xi and TOTP is now accounted
for.

Within this model approach, a transformed predictor x′i is not just added
to the design matrix, thus increasing the number of predictors. When in-
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Table 3.6: Fixed set of predictors for Model 2. The numbers in brackets are the percent-
age of selections for the moving 1-year, 3-year and 5-year window.

predictors

const (100, 100, 100) ww34b (32.6, 64.9, 100)
SH max (95.3, 98.0, 100) CLc2 (31.2, 72.7, 100)
VV mean 1/x (81.7, 100, 100) Wt a2 mean (14.1, 48.5, 100)
E1 (71.0, 100, 100) N mean (13.5, 46.8, 99.5)
ww31b (68.5, 90.8, 100) ww32b (23.8, 39.4, 94.8)
Ws a mean ˆ2 (48.5, 71.2, 100) P0 mean (33.0, 34.5, 93.4)
Wt b2 mean ˆ4 (47.7, 92.6, 100) fx24 max (29.4, 54.9, 70.2)
ff mean (44.0, 62.4, 100) ww33b (19.7, 47.4, 0.5)
r1 mean (41.8, 81.7, 100) Wt a1 mean ˆ4 (40.5, 35.0, 0)
VV min log (33.8, 94.7, 100) Ws b mean (37.8, 35.6, 0)

dicated, it replaces the untransformed predictor xi it originates from, in-
stead. As a decision rule if and how to include a predictor in the design
matrix – transformed or untransformed – the correlation coefficient of xi,
respectively x′i, and TOTP is calculated for each potential transformation
(see Table 3.5) and each predictor, using the whole 6-year dataset. The
transformed predictor x′i,max exhibiting the highest squared correlation coef-
ficient r2 with TOTP is then chosen to replace xi in the design matrix, if
r2(x′i,max, TOTP )− r2(xi, TOTP ) > 0.01. The latter threshold is claimed in
order to use a transformed predictor only if it exhibits a potentially valuable
improvement of model performance.

Table 3.6 shows the predictor selection for Model 2, now allowing for non-
linear variable transformations. Compared to Table 3.2, there is a shift in
variable weighting, triggered by better implementation of predictors, such
as e.g. horizontal visibility. Whereas some predictors exhibit almost the
same ranking position as in Model 1, some predictors, such as VV mean 1/x,
VV min log, P0 mean or ww33b, feature a much higher significance. Other
predictors, such as h mean or CLc1 have dropped out of the top twenty pre-
dictors completely. There are also some other minor ranking shifts, especially
among the wind variables.

Table 3.7 shows model statistics for the three defined moving windows.
Compared to results from Model 2 (see Table 3.3), R2

adj-values have consis-
tently improved. Focusing on mean-values there is a significant rise in model
quality. This is reconfirmed by the final results using the 2001-2005 calibra-
tion window. Model 2 then is significant on the 6.47 × 10−15 level. Table
3.8 lists the quality criteria for this model. Both in diagnostic and in prog-
nostic mode, model results are better than for Model 1. Nonlinear variable
transformation thus prove to be appropriate in the punctuality modelling
approach.
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Table 3.7: Diagnostic model results for Model 2 using a moving 1-year, 3-year and 5-year
window. Minimum, mean and maximum values of R2

adj and the number of selected predic-
tor variables (Nvar) are given, both for automatic model calibration using the backward
selection scheme (auto) and the fixed set of predictors taken from Table 3.6.

1 year 3 years 5 years
auto fixed auto fixed auto fixed

min
R2

adj 0.305 0.286 0.318 0.307 0.388 0.386

Nvar 6 19 12 20 16 20

mean
R2

adj 0.449 0.435 0.424 0.423 0.409 0.408

Nvar 11 20 15 20 17 20

max
R2

adj 0.590 0.586 0.509 0.504 0.418 0.418

Nvar 19 20 21 20 20 20

Table 3.8: Quality criteria for Model 2.

quality criterion diagnostic prognostic

MAE 0.065 0.081
RMSE 0.090 0.115
SE 0.091 0.118
rmultiple 0.628 0.629
R2 0.394 0.396
R2

adj 0.387 /

3.2.3 Model 3 – Runway-Related Wind Components

When creating wind-related predictors, it seems natural to define these vari-
ables against the background of the orientation of the runway system, as
several operational thresholds are based on tailwind- and, at some airports,
also crosswind-components. Model 3 accommodates this given fact. Thus,
it is identical with Model 2, except for the wind-related predictors used. For
Model 3, the alternative wind variable definitions as described in Section 2.2.2
were followed. Thus, the runway configuration independent wind variables
as used in Model 2 were replaced by the runway dependent wind variables
listed in Table 2.7. The variable selection is somewhat different to that in the
previous model, as shown in Table 3.9. Worth mentioning is that all wind
variables depending on the runway configuration were found to be significant.

Model 3 is significant on the 3.77×10−15 level. The quality criteria of this
model are listed in Table 3.11. Compared to Model 2, there are only minor
diagnostic improvements. In prognostic mode, MAE, RMSE and SE have
slightly decreased, whereas R2 has decreased from 0.396 to 0.389. Based on
these ambiguous model results, the strategy of using runway configuration de-
pendent wind-related predictor variables is not further pursued within these
analyses. Model 2 will, therefore, be the basis for further model enhance-
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Table 3.9: Fixed set of predictors for Model 3. The numbers in brackets are the percent-
age of selections for the moving 1-year, 3-year and 5-year window.

predictors

const (100, 100, 100) Ws PB mean (38.3, 72.6, 100)
SH max (95.7, 98.0, 100) Wt S mean (36.8, 49.3, 100)
Wt head PB mean (83.1, 100, 100) VV min log (30.7, 97.5, 100)
Ws PB mean ˆ2 (82.1, 99.9, 100) ww34b (28.8, 70.5, 100)
VV mean 1/x (75.5, 100, 100) CLc2 (27.2, 78.2, 100)
E1 (71.6, 100, 100) N mean (21.1, 74.7, 100)
Wt tail PB mean (71.2, 94.1, 100) P0 mean (34.6, 57.2, 98.4)
ww31b (68.7, 90.9, 100) fx24 max (39.2, 76.4, 97.5)
Wt N mean ˆ4 (53.6, 88.6, 100) ww32b (20.7, 22.6, 93.9)
r1 mean (44.2, 78.5, 100) h mean log (23.5, 57.5, 43.7)

Table 3.10: Diagnostic model results for Model 3 using a moving 1-year, 3-year and
5-year window. Minimum, mean and maximum values of R2

adj and the number of se-
lected predictor variables (Nvar) are given, both for automatic model calibration using the
backward selection scheme (auto) and the fixed set of predictors taken from Table 3.9.

1 year 3 years 5 years
auto fixed auto fixed auto fixed

min
R2

adj 0.294 0.286 0.321 0.317 0.392 0.390

Nvar 7 19 14 20 19 20

mean
R2

adj 0.452 0.438 0.430 0.428 0.412 0.411

Nvar 13 20 18 20 20 20

max
R2

adj 0.589 0.588 0.515 0.509 0.421 0.420

Nvar 19 20 22 20 22 20

ment steps. For later studies with more precise data on runway configuration
changes it should be investigated if predictor variables based on this refined
information are capable of improving model quality more significantly. For
the sake of completeness, also for this approach diagnostic model results are
summarised in Table 3.10.

3.2.4 Model 4 – Enhanced Boolean Predictor Variables

Focusing on boolean type predictor variables, describing e.g. a thunderstorm
occurrence or the observation of a certain cloud type, the question of event
frequency and duration comes to the fore. A thunderstorm passing the air-
port quickly, will, in the simple boolean variable scheme, be represented the
same way as a sequence of several thunderstorm cells, hitting the airport
during the course of day. The impact of the latter on air traffic operations
is, however, likely to be considerably larger.

Based on model assumptions made for Model 2, Model 4, therefore, uses
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Table 3.11: Quality criteria for Model 3.

quality criterion diagnostic prognostic

MAE 0.065 0.080
RMSE 0.090 0.114
SE 0.090 0.117
rmultiple 0.631 0.624
R2 0.398 0.389
R2

adj 0.392 /

Table 3.12: Fixed set of predictors for Model 4. The numbers in brackets are the
percentage of selections for the moving 1-year, 3-year and 5-year window.

predictors

const (100, 100, 100) RRR mean sqrt (39.2, 45.3, 99.7)
SH max (90.8, 94.9, 100) VV mean 1/x (40.7, 99.5, 96.2)
ww31b (81.4, 100, 100) N mean (22.1, 49.8, 98.1)
ww34b (70.4, 100, 100) TT mean (48.4, 31.7, 94.0)
E1 (63.5, 100, 100) Wt b2 lim (38.2, 69.5, 72.4)
ff mean (52.6, 86.7, 100) Ws a mean ˆ2 (44.2, 69.6, 53.8)
CLc2 (41.3, 98.1, 100) CLc1 (29.4, 55.9, 4.9)
ww33b (37.3, 41.9, 100) ww35b sqrt (26.0, 43.6, 0.3)
VV min log (23.8, 44.8, 100) fx24 max (31.7, 43.5, 32.2)
Wt a2 mean (20.1, 40.5, 100) Wt b2 mean ˆ4 (32.6, 30.5, 41.8)

enhanced boolean predictor variables. In Model 2, predictors from categories
ww3xb, CLcx, Ex and Wt b2 lim were purely boolean, thus only exhibiting
values 0 or 1, depending on whether the respective event occurred or not.
Model 4, in contrast, additionally uses information on the number of oc-
currences per day. In this model, each predictor from the above groups of
predictors is allowed to take values between 0 and 10. A maximum value of
10 is assigned, if the respective event occurred at each official observation,
i.e. 24 times per day. Likewise, a value of 0 is assigned, if the event did not
occur at all. Values between 0 and 10 are assigned according to the daily
number of occurrences. This way, boolean type variables are transformed to
interval-scaled variables. Non-linear variable transformations as described in
Section 3.2.2 can be applied to these enhanced boolean variables just like to
any other non-boolean predictor variable, taking into account the limitations
given in Table 3.5. Table 3.12 shows the selection of significant variables for
Model 4. There are some major shifts in variable significance as compared
to Model 2. Some predictors such as r1 mean, ww32b or P0 mean have com-
pletely dropped out of the list. Other previously not selected variables such
as RRR mean sqrt, TT mean, Wt b2 lim, CLc1 or ww35b sqrt now proved
to be of higher significance. Under this new constellation, there were also
some shifts in variable importance with regard to wind related predictors.
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Table 3.13: Diagnostic model results for Model 4 using a moving 1-year, 3-year and
5-year window. Minimum, mean and maximum values of R2

adj and the number of se-
lected predictor variables (Nvar) are given, both for automatic model calibration using the
backward selection scheme (auto) and the fixed set of predictors taken from Table 3.12.

1 year 3 years 5 years
auto fixed auto fixed auto fixed

min
R2

adj 0.339 0.320 0.342 0.340 0.415 0.413

Nvar 6 19 11 20 14 20

mean
R2

adj 0.476 0.459 0.450 0.447 0.434 0.433

Nvar 12 20 16 20 17 20

max
R2

adj 0.581 0.578 0.525 0.522 0.444 0.443

Nvar 18 20 21 20 20 20

Table 3.14: Quality criteria for Model 4.

quality criterion diagnostic prognostic

MAE 0.063 0.077
RMSE 0.088 0.111
SE 0.089 0.114
rmultiple 0.648 0.653
R2 0.420 0.426
R2

adj 0.414 /

Diagnostic model results for the moving 1-year, 3-year and 5-year win-
dows are shown in Table 3.13. Compared to the results shown in Table 3.7,
the present approach exhibits a considerable improvement in R2

adj. Model 4
calibrated with 2001-2005 data is significant on the 1.96 × 10−16 level. The
introduction of enhanced boolean variables yields a noticeable improvement
in model quality as shown in Table 3.14. Both in diagnostic and in prog-
nostic mode, model errors have decreased as compared to Model 2. R2

adj has
increased from 0.387 to 0.414, in prognostic mode the improvement in R2

is from 0.396 to 0.426. Against the background of these results, enhanced
boolean predictor variables prove to be a reasonable model enhancement.
They are thus used for later model stages.

3.2.5 Model 5 – Upper Level Wind

The introduction of upper level wind variables into the model, as proposed by
Spehr (2003), is a another step forward to a model incorporating predictors
based on operational thresholds. Unarguably, direction and strength of upper
level winds are significant factors with regard to approach staggering (see
arrival rate matrix in Appendix A) and, consequently, airport acceptance rate
and punctuality. In the following, it is analysed, if the inclusion of upper level
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Table 3.15: Fixed set of predictors for Model 5 using log information on upper level
winds. The numbers in brackets are the percentage of selections for the moving 1-year,
3-year and 5-year window.

predictors

const (100, 100, 100) RRR mean sqrt (33.2, 59.6, 100)
SH max (92.7, 97.3, 100) VV min log (24.6, 33.7, 100)
ww31b (80.7, 100, 100) Wt a2 mean (20.5, 45.8, 100)
ww34b (73.2, 100, 100) ww33b (30.8, 18.7, 91.3)
E1 (66.3, 99.6, 100) Wt b2 lim (40.1, 69.5, 88.3)
Hoehenwinde (65.8, 100, 100) N mean (17.0, 49.2, 87.7)
TT mean (56.8, 50.2, 100) CLc4 (27.0, 32.8, 67.5)
CLc2 (53.4, 99.9, 100) CLc3 (14.6, 28.0, 67.5)
ff mean (47.0, 73.3, 100) Ws a mean ˆ2 (46.5, 63.0, 36.6)
VV mean 1/x (42.4, 98.7, 100) P0 mean (18.6, 35.3, 57.4)

Table 3.16: Fixed set of predictors for Model 5 using AMDAR information on upper level
winds. The numbers in brackets are the percentage of selections for the moving 1-year
and 3-year window.

predictors

const (100, 100) E1 (52.4, 98.4)
ww31b (98.5, 100) RRR mean sqrt (42.4, 96.7)
ww34b (93.3, 100) N mean (15.2, 94.8)
SH max (86.9, 100) VV min log (29.4, 91.3)
Wt b2 lim (69.1, 100) h mean log (27.1, 84.2)
Ws a mean ˆ2 (66.8, 100) CLc1 (37.4, 72.4)
VV mean 1/x (42.6, 100) max Tangentialwind a tail gt35 (29.2, 71.3)
CLc2 (46.4, 99.5) max Tangentialwind a head ge15 (15.5, 65.6)
Ws b mean (35.7, 99.5) P0 mean (24.9, 62.0)
TT mean (48.3, 98.9) ww33b (24.7, 60.9)

wind variables results in the expected model improvement. Based on Model
4, there were two different upper level wind data sources available for Model
5, as described in Section 2.2.1 and 2.2.3 and discussed in Section 2.2.3.1: 1)
daily logs, 2) AMDAR data. Notice that both the log-based boolean variable
Hoehenwinde and AMDAR-based boolean variables remain purely boolean,
i.e. they are not transformed like the SYNOP-based predictors as described
in Section 3.2.4. This is because log information is only available in day
resolution. AMDAR information, on the other hand, is not evenly distributed
over the course of day with significantly less reports during nighttime. Hence,
it is not reasonable to create enhanced boolean variables. In the following,
results after inclusion of either log or AMDAR data are compared.

Table 3.15 shows the variable selection when upper level wind informa-
tion is taken from the daily logs. The additional predictor Hoehenwinde
is among the most selected predictors in all three windows. Table 3.16



64 CHAPTER 3. RESULTS

Table 3.17: Diagnostic model results for Model 5 using a moving 1-year, 3-year and
5-year window and log information on upper level winds. Minimum, mean and maximum
values of R2

adj and the number of selected predictor variables (Nvar) are given, both for
automatic model calibration using the backward selection scheme (auto) and the fixed set
of predictors taken from Table 3.15.

1 year 3 years 5 years
auto fixed auto fixed auto fixed

min
R2

adj 0.340 0.318 0.357 0.351 0.437 0.436

Nvar 7 19 12 20 15 20

mean
R2

adj 0.493 0.474 0.470 0.467 0.462 0.461

Nvar 13 20 17 20 19 20

max
R2

adj 0.610 0.604 0.547 0.545 0.475 0.474

Nvar 19 20 22 20 21 20

Table 3.18: Diagnostic model results for Model 5 using a moving 1-year and 3-year and
AMDAR information on upper level winds. Minimum, mean and maximum values of R2

adj

and the number of selected predictor variables (Nvar) are given, both for automatic model
calibration using the backward selection scheme (auto) and the fixed set of predictors
taken from Table 3.16.

1 year 3 years 5 years
auto fixed auto fixed auto fixed

min
R2

adj 0.383 0.335 0.491 0.485 / /

Nvar 7 20 15 20 / /

mean
R2

adj 0.537 0.514 0.514 0.510 / /

Nvar 14 20 20 20 / /

max
R2

adj 0.608 0.586 0.535 0.533 / /

Nvar 21 20 23 20 / /

shows the respective variable selection, when AMDAR information on upper
level winds is included. Notice that AMDAR information was only avail-
able from 2003 to 2006, hence no 5-year window could be moved through
the data. Two AMDAR-based predictors (max Tangentialwind a tail gt35,
max Tangentialwind a head ge15 ) were found to be among the 20 most im-
portant predictors. Both are related to upper level winds tangential to the
PRS orientation.

Tables 3.17 and 3.18 specify the diagnostic model results for both model
versions. Comparisons with the reference Model 4 (see Table 3.13) show that
the inclusion of either log or AMDAR based upper level wind variables im-
proves diagnostic model performance. In direct comparison, AMDAR based
predictors prove to be most efficient.

Tables 3.19 and 3.20 give the final model results for Model 5, includ-
ing either log or AMDAR based predictors. Model 5 calibrated with 2001-
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Table 3.19: Quality criteria for Model 5 using log information on upper level winds.
Calibration periods 2001-2005 and 2003-2005 for comparison with Table 3.20.

2001-2005 2003-2005
quality criterion diagnostic prognostic diagnostic prognostic

MAE 0.062 0.074 0.058 0.077
RMSE 0.086 0.105 0.083 0.107
SE 0.087 0.108 0.084 0.110
rmultiple 0.666 0.667 0.721 0.660
R2 0.443 0.445 0.520 0.436
R2

adj 0.437 / 0.511 /

Table 3.20: Quality criteria for Model 5 using AMDAR information on upper level winds.

quality criterion diagnostic prognostic

MAE 0.060 0.077
RMSE 0.084 0.109
SE 0.085 0.112
rmultiple 0.708 0.652
R2 0.501 0.426
R2

adj 0.492 /

2005/2003-2005 data and using log information on upper level winds is sig-
nificant on the 7.23 × 10−18/1.16 × 10−14 level. Model 5 calibrated with
2003-2005 data and using AMDAR information on upper level winds is sig-
nificant on the 1.01 × 10−13 level. For comparison, Table 3.19 gives results
both for the established calibration period 2001-2005 and for the calibration
period 2003-2005.

As given in Tables 3.19 and 3.20, both versions of Model 5 exhibit better
results, both diagnostic and prognostic, than the reference Model 4 (see Table
3.14). Unlike intermediate results shown in Tables 3.17 and 3.18, final quality
criteria for the model with log based upper level wind information are better
than those for the model with AMDAR based information included, both in
diagnostic and prognostic mode. Furthermore, it shows that using the 3-year
calibration window in the log-enhanced model leads to better diagnostic but
worse prognostic results, compared to the model calibrated on 5-years. This
effect is later discussed in Section 3.2.13.1.

In the following, taking the latter results and quality criteria into account,
further model enhancements will emanate from the superior Model 5 with
log information on upper level winds included. In particular, this choice is
also justified since the long calibration period 2001-2005 can thus be further
used, as log data is available for the whole 5-year period. For potential
punctuality forecast models, which will be discussed in Section 3.3, AMDAR-
based predictors are reconsidered. On one hand, they proved to raise model
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Table 3.21: Fixed set of predictors for Model 6. The numbers in brackets are the
percentage of selections for the moving 1-year, 3-year and 5-year window.

predictors

const (100, 100, 100) h mean log (37.5, 85.1, 100)
TOTFL scheduled (100, 100, 100) Wt a2 mean (32.0, 36.7, 100)
SH max (98.2, 99.3, 100) CLc1 (31.7, 79.6, 100)
ww31b (76.5, 100, 100) fx24 max (23.0, 60.7, 100)
Wt b2 lim (72.7, 97.8, 100) h max (9.4, 53.3, 97.0)
E1 (68.5, 100, 100) Ws a mean ˆ2 (41.4, 75.4, 96.2)
ww34b (67.4, 100, 100) N mean (16.6, 35.0, 95.6)
Hoehenwinde (61.1, 100, 100) VV min log (22.1, 32.0, 92.3)
ff mean (54.3, 79.3, 100) RRR mean sqrt (35.6, 53.6, 88.0)
ww33b (46.5, 87.4, 100) CLc2 (51.2, 76.1, 87.2)

quality as compared to previous models. On the other hand, they can, unlike
the log based predictor Hoehenwinde, be forecasted by NWP models and thus
be generally used as an input for a punctuality forecast model.

3.2.6 Model 6 – Traffic

Up to this point, model improvements were achieved either through methodic
advancements or the extension and refinement of the database of weather-
related predictors. It is well known, that the amount of traffic an airport has
to cope with in a given time frame, especially against the background of the
airport’s nominal capacity, is a crucial factor in terms of the generation and
multiplication of delays. In Model 6, which is based on Model 5, information
on scheduled traffic is, therefore, taken into account. Table 3.21 lists the
selection of predictors for this enhanced model. Again, there are predictor
variable shifts compared to the previous model. Most important, the newly

Table 3.22: Diagnostic model results for Model 6 using a moving 1-year, 3-year and
5-year window. Minimum, mean and maximum values of R2

adj and the number of se-
lected predictor variables (Nvar) are given, both for automatic model calibration using the
backward selection scheme (auto) and the fixed set of predictors taken from Table 3.21.

1 year 3 years 5 years
auto fixed auto fixed auto fixed

min
R2

adj 0.465 0.437 0.485 0.480 0.515 0.512

Nvar 9 19 16 20 19 20

mean
R2

adj 0.575 0.556 0.552 0.549 0.539 0.536

Nvar 14 20 19 20 22 20

max
R2

adj 0.669 0.664 0.594 0.590 0.549 0.548

Nvar 18 20 24 20 24 20
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Table 3.23: Quality criteria for Model 6.

quality criterion diagnostic prognostic

MAE 0.058 0.069
RMSE 0.080 0.095
SE 0.081 0.097
rmultiple 0.721 0.719
R2 0.519 0.517
R2

adj 0.514 /

introduced predictor TOTFL scheduled is always selected within all three
windows. Thus, it is a meaningful extension of the predictor base.

The diagnostic model results shown in Table 3.22 support the relevance
of traffic information to be used as model input variable. R2

adj values are
consistently higher than in Model 5, both diagnostic and prognostic. The
gain in mean R2

adj is almost 10 percentage points. The final model results
(see Table 3.23) show the same tendency. Both model errors and R2 exhibit
a significant improvement. Even prognostic R2 values are now larger than
0.5. Model 6 calibrated with 2001-2005 data is significant on the 1.67×10−23

level and thus highly significant. Scheduled traffic will, therefore, be included
in further model stages.

3.2.7 Model 7 – Weather Related Predictors

Model 7 further continues with the inclusion of potentially relevant weather-
related predictors. In this model, two additional variables (also see Section
2.2.1) are introduced: DayIndex and Mix. DayIndex for this model com-
prises information on the CAT stage, only. ATC regulations and special
events/incidents are not considered in Model 7. The simple boolean pre-

Table 3.24: Fixed set of predictors for Model 7. The numbers in brackets are the
percentage of selections for the moving 1-year, 3-year and 5-year window.

predictors

const (100, 100, 100) ww33b (50.1, 90.3, 100)
TOTFL scheduled (100, 100, 100) Wt a2 mean (34.6, 40.0, 100)
SH max (98.3, 99.6, 100) h mean log (33.3, 81.9, 100)
Wt b2 lim (70.7, 93.0, 100) CLc1 (31.9, 76.1, 100)
E1 (70.6, 100, 100) fx24 max (22.2, 55.4, 100)
ww31b (70.3, 100, 100) VV mean 1/x (40.1, 90.9, 98.6)
ww34b (67.0, 100, 100) RRR mean sqrt (34.4, 70.1, 97.5)
DayIndex (64.0, 100, 100) h max (6.2, 37.6, 82.5)
Hoehenwinde (63.2, 100, 100) Ws a mean ˆ2 (41.3, 76.1, 80.3)
ff mean (53.7, 82.5, 100) CLc2 (48.1, 75.3, 79.0)
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Table 3.25: Diagnostic model results for Model 7 using a moving 1-year, 3-year and
5-year window. Minimum, mean and maximum values of R2

adj and the number of se-
lected predictor variables (Nvar) are given, both for automatic model calibration using the
backward selection scheme (auto) and the fixed set of predictors taken from Tables 3.24.

1 year 3 years 5 years
auto fixed auto fixed auto fixed

min
R2

adj 0.476 0.441 0.494 0.489 0.523 0.521

Nvar 9 18 16 20 20 20

mean
R2

adj 0.584 0.566 0.563 0.559 0.545 0.543

Nvar 14 20 20 20 22 20

max
R2

adj 0.682 0.671 0.602 0.600 0.555 0.552

Nvar 20 20 26 20 25 20

Table 3.26: Quality criteria for Model 7.

quality criterion diagnostic prognostic

MAE 0.057 0.070
RMSE 0.079 0.096
SE 0.080 0.099
rmultiple 0.728 0.706
R2 0.530 0.499
R2

adj 0.525 /

dictor Mix, as defined in Section 2.2.1, tells if runway configuration changes
occurred on a given day. The number of changes per day is not accounted for.
Both DayIndex as defined above and Mix are weather related and can po-
tentially be predicted by NWP models, and a follow-up model, respectively.
The CAT stage can, at least theoretically, be drawn from visibility and cloud
information. Preconditions for the initiation of runway configuration changes
are well specified. Mix can thus be deduced from wind data.

Table 3.24 lists the predictors selected for this model. The variable Mix
was not among the 20 most important predictors. DayIndex, in contrast,
is highly significant. Using this extended set of predictors exhibits slightly
better diagnostic results than for Model 6, as shown in Tables 3.25 and 3.26.
Model 7 calibrated with 2001-2005 data is significant on the 1.83×10−24 level
and thus highly significant. In prognostic mode, however, model quality has
decreased compared to the previous model, both in terms of model errors and
R2 values. In following models, this effect will be kept in mind and discussed
again.
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Table 3.27: Fixed set of predictors for Model 8. The numbers in brackets are the
percentage of selections for the moving 1-year, 3-year and 5-year window.

predictors

const (100, 100, 100) ww33b (47.7, 58.3, 100)
DayIndex (100, 100, 100) VV mean 1/x (45.4, 94.6, 100)
TOTFL scheduled (100, 100, 100) ff mean (59.6, 80.4, 99.2)
SH max (91.1, 99.5, 100) Wt a2 mean (31.2, 44.9, 93.7)
TOTFL scheduled minus TOTFL (82.8, 100, 100) fx24 max (15.8, 41.8, 86.1)
Hoehenwinde (66.7, 100, 100) CLc1 (21.1, 59.6, 77.3)
E1 (64.4, 99.5, 100) N mean (17.7, 47.5, 77.3)
ww31b (63.1, 100, 100) Ws a mean ˆ2 (39.7, 68.3, 60.7)
ww34b (62.5, 100, 100) Wt b2 mean ˆ4 (37.7, 33.9, 65.8)
CLc2 (52.9, 82.3, 100) Wt b2 lim (23.9, 63.5, 34.2)

3.2.8 Model 8 – Non-Weather Related Predictors

Model 8 uses a new definition of the predictor DayIndex which now comprises
information on the CAT stage, incidents and system failures as well as ATC
regulations. This implies that DayIndex is no longer a purely weather based
predictor. The advantage of this approach is that – in terms of unusual
non-weather-related events – critical days do not have to be excluded from
the analysis as done by Spehr (2003). Rather, those days are now flagged.
In a thinkable punctuality forecast approach, this newly defined predictor
DayIndex could then potentially be used as a switch to calculate two different
scenarios for TOTP, either assuming critical incidents to arise or not.

Additionally, information on actual traffic is now included in the set of po-
tential predictors. A new predictor TOTFL scheduled minus TOTFL as de-
scribed in Section 2.2.1 is then created, generally representing cancellations.
Table 3.27 shows the predictor variable selection for Model 8. Again, Mix did
not prove to be of high significance in this new, extended set of potential pre-

Table 3.28: Diagnostic model results for Model 8 using a moving 1-year, 3-year and
5-year window. Minimum, mean and maximum values of R2

adj and the number of se-
lected predictor variables (Nvar) are given, both for automatic model calibration using the
backward selection scheme (auto) and the fixed set of predictors taken from Tables 3.27.

1 year 3 years 5 years
auto fixed auto fixed auto fixed

min
R2

adj 0.555 0.511 0.561 0.550 0.587 0.584

Nvar 10 19 16 20 18 20

mean
R2

adj 0.643 0.623 0.622 0.614 0.605 0.599

Nvar 15 20 20 20 21 20

max
R2

adj 0.733 0.724 0.657 0.651 0.614 0.607

Nvar 21 20 23 20 23 20
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Table 3.29: Quality criteria for Model 8.

quality criterion diagnostic prognostic

MAE 0.053 0.067
RMSE 0.074 0.092
SE 0.074 0.095
rmultiple 0.768 0.735
R2 0.590 0.541
R2

adj 0.585 /

dictors. The newly introduced variable TOTFL scheduled minus TOTFL, in
contrast, was among the 5 most selected variables. Likewise, the extended
DayIndex variable proved to be of high significance. It was always selected
in all three windows.

Table 3.28 clearly shows that diagnostic model results have consistently
improved compared to all previous models. Mean R2 values are now around
or higher than 0.6 in all three windows. Accordingly, diagnostic results for
the final model have significantly improved, both model errors and R2, as
shown in Table 3.29. Also in prognostic mode, model errors decreased to
MAE = 0.067 and RMSE = 0.092. R2, on the other hand, increased to
0.54. Model 8 calibrated with 2001-2005 data is highly significant on the
1.68× 10−30 level.

3.2.9 Model 9 – Higher Resolution Weather Variables

Undoubtedly, the impact of a certain weather event on airport operations is
likely to vary depending on the time of day. The passage of a thunderstorm at
midnight, for example, certainly affects less aircraft around midnight than at
noon. In order to accommodate this fact, higher resolution weather variables

Table 3.30: Fixed set of predictors for Model 9. The numbers in brackets are the
percentage of selections for the moving 1-year, 3-year and 5-year window.

predictors

const (100, 100, 100) Ws b MEAN 1 (36.0, 54.2, 100)
DayIndex (100, 100, 100) RRR 2 sqrt (35.2, 63.0, 100)
TOTFL scheduled (99.9, 100, 100) VV MEAN 1 1/x (28.3, 81.1, 100)
ww31b 2 (69.7, 100, 100) ff MEAN 3 (25.7, 58.8, 100)
ww34b 2 (67.0, 100, 100) Wt b2 lim 1 (17.1, 31.0, 100)
Hoehenwinde (66.4, 100, 100) ww31b 1 (10.8, 79.9, 100)
TOTFL scheduled minus TOTFL E1 3 (9.9, 43.5, 98.4)
(65.5, 100, 100) fx24 max (28.5, 45.9, 96.4)
ww32b 3 (47.7, 79.9, 100) SH MAX 3 (51.0, 37.6, 95.9)
ff mean (44.0, 66.4, 100) Wt a1 MEAN 3 ˆ4 (39.7, 71.1, 95.6)
Wt b1 MEAN 1 (37.1, 35.2, 100)
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Table 3.31: Diagnostic model results for Model 9 using a moving 1-year, 2-year, 3-year
and 5-year window. Minimum, mean and maximum values of R2

adj and the number of
selected predictor variables (Nvar) are given, both for automatic model calibration using
the backward selection scheme (auto) and the fixed set of predictors taken from Tables
3.30.

1 year 2 years 3 years 5 years
auto fixed auto fixed auto fixed auto fixed

min
R2

adj 0.631 0.517 0.606 0.554 0.619 0.580 0.628 0.599

Nvar 17 17 23 19 25 20 32 20

mean
R2

adj 0.724 0.632 0.683 0.621 0.673 0.622 0.646 0.610

Nvar 30 19 33 20 36 20 38 20

max
R2

adj 0.817 0.715 0.750 0.677 0.706 0.658 0.654 0.616

Nvar 50 20 49 20 49 20 44 20

as introduced in Section 2.2.2 are added to the pool of predictors in Model 9.
Blocks of six hours length are evenly distributed over the course of day and
supposed to better satisfy the effect of weather events at special times of day.
Using a mix of predictors on a 24 as well as 6 hour basis significantly increases
the number of potential predictor variables. Table 3.30 shows the selection
of final predictor variables taken from the extended pool of predictors. It is a
well-balanced mix of predictors available at 6-hour resolution and predictors
available at 24-hour resolution, whereof many proved to be highly significant
in previous models.

Results of Model 9 are brought together in Table 3.31. Compared to
Model 8, diagnostic results have again improved in all three windows. A
2-year window is added for comparisons with later models. Concentrating on
the most important window, the 5-year window, mean R2 has increased from
0.599 to 0.610. Values given using the automatic backward selection scheme
should be carefully interpreted, as more variables (50 at maximum) proved
to be significant on the � = 0.05-level.

Model 9 calibrated with 2001-2005 data is highly significant on the 4.09×
10−32 level. Model results are shown in Table 3.32. Diagnostic, and more

Table 3.32: Quality criteria for Model 9.

quality criterion diagnostic prognostic

MAE 0.052 0.066
RMSE 0.073 0.090
SE 0.073 0.093
rmultiple 0.777 0.748
R2 0.604 0.559
R2

adj 0.599 /
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Table 3.33: Fixed set of predictors for the summer season, Model 10. The numbers in
brackets are the percentage of selections for the moving 1-year, 2-year and 3-year window.

predictors

const (100, 100, 100) RR1 MAX 1 sqrt (42.1, 61.4, 100)
DayIndex (100, 100, 100) ww32b 3 (40.9, 65.5, 100)
TOTFL scheduled (94.5, 100, 100) Wt b2 MEAN 3 ˆ4 (32.8, 91.8, 100)
Hoehenwinde (78.0, 100, 100) TT MEAN 3 (31.2, 52.6, 100)
TOTFL scheduled minus TOTFL TT MEAN 4 (27.1, 64.0, 100)
(66.1, 69.1, 100) VV MEAN 4 log (18.8, 33.5, 100)
Wt b1 MEAN 3 ˆ3 (60.5, 100, 100) ww31b 2 (16.0, 53.8, 99.5)
VV MIN 2 log (56.2, 69.2, 100) Wt b1 MEAN 2 ˆ2 (37.1, 51.9, 97.9)
RRR 1 sqrt (53.1, 75.8, 100) RRR 2 sqrt (45.0, 86.0, 96.4)
VV MEAN 3 1/x (43.8, 74.8, 100) Ws b MEAN 2 (38.4, 53.8, 95.4)
CLc2 2 (42.9, 76.2, 100)

Table 3.34: Fixed set of predictors for the winter season, Model 10. The numbers in
brackets are the percentage of selections for the moving 1-year and 2-year window.

predictors

const (100, 100) ww31b 1 (27.3, 94.8)
DayIndex (100, 100) VV MIN 1 log (40.6, 92.0)
TOTFL scheduled (94.5, 100) Ws a MEAN 4 (78.7, 89.7)
TOTFL scheduled minus TOTFL Wt a1 MEAN 3ˆ4 (60.7, 83.9)
(97.8, 100) CLc2 4 (8.0, 82.2)
ww34b 2 (85.9, 100) RR1 MAX 3 sqrt (56.0, 78.7)
ww31b 2 (79.6, 100) ff mean (44.9, 77.6)
Hoehenwinde (69.4, 100) ww33b 3 (30.2, 77.6)
VV MEAN 1 1/x (66.2, 100) Wt b2 lim 1 (19.7, 70.7)
Ws a MEAN 3ˆ3 (49.4, 100) ff MEAN 3 (42.1, 66.7)
r1 MEAN 3 sqrt (46.0, 100)

important, also prognostic model results have improved over Model 9. Prog-
nostic R2 is at 0.559, SE at 0.066 and RMSE at 0.090. Thus, 6-hour block
weather predictors are considered for further enhanced models as an exten-
sion to the set of daily representatives.

3.2.10 Model 10 – Breakdown into Summer and Win-
ter Season

Model 10 makes one last step towards the final set of predictor variables.
In the following it is tested, if a breakdown into summer/winter season is
appropriate in the model approach at hand. The division is geared to the
procedural method established at Lufthansa, the most important airline at
Frankfurt Airport. Lufthansa uses different flight plans for summer and
winter season, mainly to accommodate different passenger demand and also
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Table 3.35: Diagnostic model results for the summer season, Model 10, using a moving
1-year, 2-year and 3-year window. Minimum, mean and maximum values of R2

adj and
the number of selected predictor variables (Nvar) are given, both for automatic model
calibration using the backward selection scheme (auto) and the fixed set of predictors
taken from Tables 3.33.

1 year 2 years 3 years
auto fixed auto fixed auto fixed

min
R2

adj 0.575 0.530 0.587 0.534 0.598 0.560

Nvar 11 19 27 19 27 20

mean
R2

adj 0.691 0.590 0.637 0.572 0.608 0.567

Nvar 32 20 37 20 37 20

max
R2

adj 0.802 0.672 0.691 0.626 0.619 0.575

Nvar 52 20 49 20 46 20

Table 3.36: Diagnostic model results for the winter season, Model 10, using a moving
1-year and 2-year window. Minimum, mean and maximum values of R2

adj and the number
of selected predictor variables (Nvar) are given, both for automatic model calibration using
the backward selection scheme (auto) and the fixed set of predictors taken from Tables
3.34.

1 year 2 years
auto fixed auto fixed

min
R2

adj 0.680 0.544 0.689 0.622

Nvar 18 19 22 20

mean
R2

adj 0.740 0.645 0.701 0.637

Nvar 31 20 30 20

max
R2

adj 0.791 0.707 0.714 0.653

Nvar 49 20 42 20

different weather and traffic conditions. In that respect, Lufthansa and many
other airlines even use different schedule buffers in the summer and winter
season.

In the following, data is subdivided into summer and winter data. In that
regard, the summer season is identical with the time of year with daylight-
saving time. Thus, the summer season is slightly longer than the winter sea-
son and, accordingly, there is less winter data for calibration. Tables 3.33 and
3.34 show the final set of predictors selected for the summer and winter sea-
son season. Note that no 5-year window could be moved through the summer
data as there were only 1288 summer days available for calibration. Thus,
a 2-year window was introduced in addition to the 1- and 3-year windows.
For the winter season, only a 1-year and 2-year window could be applied
as the dataset offered only 903 winter season days according to the above
definition. Both predictor selections exhibit typical seasonal predictors. For
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Table 3.37: Quality criteria for Model 10.

quality criterion diagnostic prognostic

MAE 0.053 0.065
RMSE 0.073 0.091
SE 0.073 0.094
rmultiple 0.778 0.744
R2 0.606 0.554
R2

adj 0.601 /

example, 34b 2, i.e. solid precipitation, is higly significant in winter. In the
summer variable set, 32b 2, i.e. thunderstorms, proved to be highly signifi-
cant. On the other hand, other typical seasonal variables, such as SH MAX x
or E1 x/E2 x, are not among the most selected predictors. Altogether, 34
different predictor variables are selected, some both in the summer and in the
winter set of predictor variables. As only one set of predictors is applied at
a time, depending on the season, only 20 predictors are used for calculations
at a time. Thus, performance comparisons with previous models, where a
set of 20 predictors was used each time, are possible and reasonable.

Diagnostic model results for summer and winter seasons are given in Ta-
bles 3.35 and 3.36. Comparisons with results from the previous Model 9
show that there are no significant quality improvements when applying this
enhanced model. Note that splitting data into summer and winter data
results in less data to move the summer/winter windows through. Further-
more, the 5-year window, and in case of the winter season, also the 3-year
window, could not be used. Comparing the 1- and 2-year windows with each
other, it strikes that using only winter data for calibration produces much
better R2 values as compared to results obtained using summer data. For
winter days only, mean R2

adj is slightly higher than mean R2
adj for the non-

seasonal datasets in Model 9 (see Table 3.31). For summer days, on the
other hand, there is a significant drop in R2

adj . There is no obvious reason
for this behaviour. Since Model 10 is separately optimised for summer and
winter season, it has to be concluded that either other, non-weather-related
factors more dominantly come into play in the summer season, or that the
weather impact on punctuality is less in the summer period. It is, on the
other hand, also thinkable that this impact is just more complex than in the
winter season and less well captured through the model approach at hand.

Table 3.37 gives the quality criteria for Model 10. This model, calibrated
with 2001-2005 data, is highly significant on the 4.22 × 10−32 level. In di-
agnostic mode, both model errors and R2 values are nearly identical with
the respective criteria from Model 9 (see Table 3.32). In prognostic mode,
R2 has slightly decreased, whereas model errors remained almost unchanged.
The main reason for this somewhat surprising result is probably that calibra-
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tion periods, using this breakdown into summer and winter season, are much
shorter than for a non-seasonal calibration. Again, the thesis is supported
that slightly longer calibration periods are favourable.

Based on these results – Model 9 performs comparably well in diagnostic
mode and even better in prognostic mode at less complexity – it is not rea-
sonable to further pursue the approach chosen in Model 10 of separating the
year into one summer and one winter season for model calibration and appli-
cation. Therefore, Model 9 will be the basis for further model enhancement
steps.

3.2.11 Model 11 – AR(1) Extension

Table 2.7 in Section 2.1.4 revealed that TOTP is autocorrelated with a lag-1
autocorrelation coefficient of 0.42. After fixation of the final set of predictor
variables (see Table 3.30), model performance shall thus be increased using
an additional AR(1) component, as described in Section 2.3.3. This way,
time series information, which was ignored in previous models, is evaluated
and a correction term is added to the multiple linear regression equation in
order to account for autocorrelation effects.

Table 3.38 shows the diagnostic model results for Model 11. Clearly, there
is a significant improvement in diagnostic R2 values in all three windows.
Also final results for this model, brought together in Table 3.39, corroborate
the value of including time series information in the model approach. For
the AR-enhanced Model 11, which is significant on the 4.09 × 10−32 level,
diagnostic R2

adj is 0.648. MAE is at 0.049 and RMSE at 0.068, respectively.
In prognostic mode, R2 is as high as 0.587 and has thus increased another
3 percentage points, compared to Model 9. The mean absolute error has
decreased from 0.066 to 0.063, RMSE from 0.090 to 0.088. Based on these
results, the AR(1) term is included in all following models.

Table 3.38: Diagnostic model results for Model 11 using a moving 1-year, 3-year and
5-year window. Minimum, mean and maximum values of R2

adj and the number of se-
lected predictor variables (Nvar) are given, both for automatic model calibration using the
backward selection scheme (auto) and the fixed set of predictors taken from Tables 3.30.

1 year 3 years 5 years
auto fixed auto fixed auto fixed

min
R2

adj 0.661 0.577 0.668 0.639 0.674 0.646

Nvar 17 17 25 20 32 20

mean
R2

adj 0.740 0.664 0.706 0.665 0.688 0.652

Nvar 30 19 36 20 38 20

max
R2

adj 0.826 0.746 0.728 0.692 0.697 0.658

Nvar 50 20 49 20 44 20
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Table 3.39: Quality criteria for Model 11.

quality criterion diagnostic prognostic

MAE 0.049 0.063
RMSE 0.068 0.088
SE 0.069 0.090
rmultiple 0.807 0.766
R2 0.652 0.587
R2

adj 0.648 /

3.2.12 Model 12 – Regression Trees

In the previous models, the multivariate linear regression approach was grad-
ually enhanced by mathematical refinements and procedural improvements.
A final set of predictor variables was determined and used to evaluate diag-
nostic as well as prognostic model performance. Using pure linear regression
produced good results for days with high punctualities. However, on days
with lower punctualities, there is a tendency of overestimating punctuality.
That means, modelled punctualities are generally higher than actual punc-
tualities. This is due to nonlinear effects not captured by the linear model.
The effect is most obvious for days with TOTP< 0.5. Therefore, endeavours
are being made, to improve model results for low punctuality days as defined
in Section 3.1.

3.2.12.1 A Pure Regression Tree Model

Regression trees, in combination with other methodical approaches when
indicated and when intelligently constructed and applied, theoretically allow
for a detailed consideration and modelling of low punctuality days. Pure
multivariate linear regression modelling, on the contrary, leaves little room
for this approach. In a first step, a comparison model is set up on the basis
of pure regression tree modelling. For this and all consecutive models, new
ground is broken to evaluate model performance.

Regression trees, in general, can be tuned that way that diagnostic model
results are close to or even perfect. Such an artificially tuned model is,
however, totally overdetermined and only able to reproduce its calibration
dataset, which is of little value. Applied to independent data, model results
are generally bad. Therefore, there is no need to use the window method
for model evaluation, as applied in the previous sections. Rather, model
performance is evaluated on a prognostic basis, only.

Table 3.40 shows diagnostic (only for comparison with previous models
and model stages) and prognostic model results for a pure regression tree
model. Predictor variables are taken from Table 3.30. As described in Sec-
tion 2.3.2, the tree is grown until each terminal node contains only one single
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Table 3.40: Quality criteria for a pure regression tree model.

quality criterion diagnostic prognostic

MAE 0.053 0.078
RMSE 0.073 0.117
SE 0.074 0.120
rmultiple 0.774 0.563
R2 0.599 0.316
R2

adj 0.594 /

case. Afterwards, the tree is successively pruned until it contains 28 leaves,
only. No AR(1) component is added. Both, diagnostic and prognostic R2-
values and model errors are worse than for the linear regression Model 9.
Figures 3.5a and b show the scatterplots of TOTP and TOTPM/TOTPF

for the pure regression tree model. While in diagnostic mode, variability is
similar to variability obtained through linear regression, the scattering is un-
acceptably large in prognostic mode. The somewhat artificial look of both
the scatterplots and the time series (see Figure 3.6) is due to the limitation
to 28 terminal nodes. Generally, it is the crucial difficulty in the construc-
tion of regression trees to find a good balance between reproducibility and
generalisability. Figure 3.6 impressively shows that the isolated regression
tree approach at hand is not capable of correctly predicting low punctuality
values. Also, it cannot reproduce daily variation of punctuality in a quality
MLR is able to achieve. In Section 3.2.12.2, a more sophisticated approach
will, therefore, be presented.
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Figure 3.5: Scatterplot of TOTP and (a) TOTPM , (b) TOTPF for the pure regression
tree model.
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Figure 3.6: Time series of TOTP, TOTPF and the model error for the pure regression
tree model. Dashed lines give twice the standard deviation of TOTP.

3.2.12.2 A Hybrid Model Approach

As shown in the previous section, an isolated regression tree approach is no
good candidate for punctuality modelling. However, an intelligent combina-
tion of multivariate linear regression and regression trees, enhanced by an
AR(1) component, might still improve model quality. The idea is to use mul-
tivariate linear regression as the basic mathematical approach. MLR proved
to give reasonable modelling results for a wide range of punctualities. Only
on low punctuality days, i.e. days with TOTP<0.5, MLR showed a tendency
of overestimating punctualities. In the following, the focus is on an improve-
ment of model results for days with punctualities lower than 0.5. In Section
3.2.12.1 it was found that an approach with one single regression tree will
not lead to this desired improvement as low punctualities are generally badly
modelled by a single tree.

Instead of using one tree, several trees are generated, using the back-
ground information collected and discussed in Section 3.1 as a starting point.
Each of these special regression trees is constructed from a limited dataset
which is specified below, only. The limitation criteria are extracted from
Table 3.1 in the following way. A rank coefficient  i is introduced for each
criterion:

 i = 100 ⋅
Ni, 0.5

Ni

⋅ (1−mean(TOTP i)) (3.2)

with mean(TOTP i) being the average punctuality on those days where cri-
terion i was fulfilled, Ni the number of days where where criterion i was
fulfilled, and Ni, 0.5 the number of days where criterion i was fulfilled and
punctuality was lower than 0.5. In the following, all criteria were ordered
in decreasing order after their rank coefficients. The 15 criteria heading this
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Figure 3.7: Time series of TOTP, TOTPF and the model error for Model 12a. Dashed
lines give twice the standard deviation of TOTP.

ranking, representing weather events typical for low punctuality days, were
selected for the construction of special trees. For each of the 15 special re-
gression trees, only those days were used, where the respective criterion was
fulfilled. This way, rather small and clear regression trees were obtained. The
general construction procedure is described in Section 2.3.2. The resulting
ranking is found in Appendix B.1. A respective ranking was also compiled
for high resolution weather data. The associated ranking table is shown in
Appendix B.2.

It should be noted that special regression trees solely will not provide
a punctuality value for each day, but only for those days where one of the
criteria listed in Tables B.1 or B.2, respectively, is fulfilled. Thus, special
regression trees cannot be used in a standalone model. Rather, special re-
gression trees may offer an alternative punctuality value, which might be
better or worse than the corresponding MLR value. If more than one of the
15 special regression trees potentially offers an alternative TOTP value, the
topmost special regression tree in the ranking is considered, only.

The final hybrid punctuality model is now constructed the following way.
As special regression trees shall only be used to potentially correct punctual-
ities obtained by MLR, two limits and one additional decision rule are intro-
duced. The first limit will in the following be referred to as MLR Correction
Limit (MLRCL), the second as Regression Tree Correction Limit (RTCL).
The MLRCL will be assigned the value 0.6, meaning that a regression tree
value will only be considered as a potential replacement candidate for a punc-
tuality value obtained by MLR, if that MLR value is smaller than 0.6. This
is considered a ”signal”. In order to avoid upward misreplacements, i.e. up-
ward corrections of rather reliable MLR values by less reliable regression tree
values, it is claimed that, in order to be used, the regression tree value has to
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Figure 3.8: Scatterplot of TOTP and TOTPF for Model 12a.

be smaller than the MLR value. Furthermore, the second limit, the RTCL,
is consulted. The regression tree correction limit is assigned the value 0.5,
i.e. an MLR value is only replaced if it is smaller than 0.6 and the alterna-
tive regression tree value is smaller than 0.5 and also smaller than the MLR
value. This way it is guaranteed that the shortcomings of the two approaches
– multivariate linear regression and regression trees – are eliminated as much
as possible, but their potentials be combined in an intelligent way.

In order to demonstrate the efficiency of the hybrid model approach, it is
applied to both low (Model 12a) and high (Model 12b) resolution predictor
variables. An AR(1) component is initially not considered. Thus, compari-
son models are Models 8 and 9, respectively. Figure 3.7 shows the time series
produced by Model 12a for the validation period, using the set of low reso-
lution predictor variables brought together in Table 3.27. Figure 3.8 shows
the corresponding scatterplot. Predictive model quality is generally good.
Fluctuations in the timeseries are well reproduced, as well as minima and
maxima. Still, there is a tendency of generally overestimating low punctual-
ity days. However, a considerable amount of these low punctuality days are
well reflected.

Altogether, the regression tree correction algorithm replaced four MLR
based punctuality values, whereat four different special regression trees (see
Table B.1) finally came into play. Obviously, the very selective correction
algorithm is not dedicated to replace a large amount of values, but to take
corrective action in a few cases. However, this is done in a very effective
way. Table 3.41 shows the improvements that could be realised through the
four replacements mentioned above, only. Compared to Model 8, R2 has
increased from 0.541 to 0.564. Also model errors have decreased remarkably.
For completion, results are also given when an additional AR(1) component
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Table 3.41: Prognostic quality criteria for Model 12a.

Model 8 Model 12a
without AR(1) with AR(1) without AR(1) with AR(1)

MAE 0.067 0.064 0.066 0.063
RMSE 0.092 0.089 0.090 0.089
SE 0.095 0.092 0.092 0.091
rmultiple 0.735 0.755 0.751 0.760
R2 0.541 0.570 0.564 0.578

is used. Thus, Model 8 is enhanced the same way as Model 11 (see Section
3.2.11), where high resolution predictors are used. Results obtained by Model
12a with AR(1) component are even better than results obtained without the
AR(1) component and almost of the same quality as Model 11, where high
resolution predictors are used.

Taking the high resolution Model 9 as a starting point for Model 12b
and falling back on Table B.2 as the guideline for special regression tree
application leads to marginal improvements in diagnostic, but no further
improvements in prognostic model quality as no value replacements were
effected in prognostic mode. On the one hand, this effect is due to the
stringent prerequisites for value replacements. On the other hand, there
are many more potential predictor variables when high resolution predictors
are used. Thus, the set of criteria for special regression trees is much more
selective and prerequisites for the application of one of the special regression
trees are less often met. In the present case of using 2006 as the validation
period and falling back on the fixed set of predictor variables taken from
Model 9, only Tree 9 (see Table B.2) comes into consideration at all. In that
context, it is not advisable to extend the set of special regression trees in
order to allow for more trees to potentially come into play, as trees further
down the ranking are less representative for low punctuality days.

Despite the latter results it is convenient to stick to the hybrid model
approach as described above. Changes in calibration or validation periods
or the set of predictor variables, e.g. because of a change in model setup or
availability/unavailability of data for certain predictors, might as well lead
to quality improvements in the high resolution model, just as realised in
the low resolution model. For example, when AMDAR based predictors are
included in the set of potential predictor variables, the final set predictors
might differ significantly from the set obtained for Model 9. As many of
the special regression trees listed in Table B.2 are built on AMDAR based
criteria, this might lead to more special regression trees to come into play.
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3.2.13 Model 13 – The Final Hybrid Model

In this section, the final hybrid Model 13, which is based on Model 12b and
which includes the regression tree correction algorithm, is specified and dis-
cussed. Up to this point, many model improvements have been implemented,
but no decision has yet been made regarding the final number of predictor
variables. So far, a number of 20 predictors was chosen for each intermediate
model without further discussion. This section shall, therefore, start with a
suggestion for the final number of variables to be included in the model.

In order to establish a basis for decision making, the 5-year calibration
period 2001-2005 and 2006 as the validation period were used. The number
of predictor variables was, based on predictors determined in Model 9, one by
one reduced and model quality criteria were calculated. As a removal crite-
rion, p-values associated to predictors (see Section 2.3.1) were adducted. The
predictor exhibiting the highest p-value in the current, adapted model was
considered for removal at the next step. The results obtained are brought to-
gether in Table 3.42. Not unexpectedly, weather predictors related to wind,
(solid) precipitation and low visibility are among the last variables to be
removed, indicating their high significance. With focus on prognostic per-
formance, the model with 16 final predictors shows the best results with the

Table 3.42: Quality criteria for models with reduced numbers of predictors.

no para removed p-value diagnosis prognosis
R2

adj MAE R2 MAE

20 / / 0.652 0.048 0.587 0.063
19 fx24 max 0.146 0.650 0.049 0.587 0.063
18 Wt b1 MEAN 1 0.017 0.650 0.049 0.588 0.063
17 ff MEAN 3 0.009 0.649 0.049 0.588 0.063
16 ww31b 1 1.39× 10−4 0.648 0.049 0.590 0.063
15 Ws b mean 1 6.33× 10−5 0.644 0.049 0.577 0.063
14 Wt a1 mean 3 ˆ4 2.61× 10−6 0.644 0.049 0.576 0.064
13 VV MEAN 1 1/x 3.31× 10−7 0.635 0.050 0.559 0.065
12 E1 3 1.41× 10−9 0.631 0.050 0.566 0.065
11 TOTFL scheduled 2.01× 10−12 0.622 0.050 0.556 0.065

minus TOTFL
10 ww32b 3 4.41× 10−14 0.609 0.051 0.554 0.066
9 Wt b2 lim 1 1.94× 10−16 0.593 0.052 0.545 0.066
8 RRR 2 sqrt 1.87× 10−26 0.565 0.053 0.527 0.067
7 ww31b 2 4.31× 10−29 0.530 0.055 0.467 0.071
6 TOTFL scheduled 2.43× 10−27 0.505 0.056 0.435 0.072
5 SH MAX 3 7.62× 10−19 0.476 0.057 0.406 0.074
4 ff mean 2.49× 10−34 0.428 0.059 0.377 0.074
3 ww34b 2 1.57× 10−51 0.375 0.062 0.293 0.077
2 DayIndex 2.41× 10−125 0.220 0.071 0.218 0.082
1 Hoehenwinde 4.46× 10−18 0.200 0.073 0.154 0.086
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Figure 3.9: Flow diagram of the final hybrid punctuality Model 13.
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Table 3.43: Fixed set of predictors for Model 13.

predictors

const ff mean
DayIndex Ws b MEAN 1
TOTFL scheduled RRR 2 sqrt
ww31b 2 VV MEAN 1 1/x
ww34b 2 Wt b2 lim 1
Hoehenwinde E1 3
TOTFL scheduled minus TOTFL SH MAX 3
ww32b 3 Wt a1 MEAN 3 ˆ4

highest R2. Models with less predictors exhibit worse R2- and MAE -values,
with a significant decrease in model performance when only 7 or less predic-
tors are used. Thus, it is reasonable to limit the number of predictors in the
final Model 13 to the 16 variables listed in Table 3.43. This mix exhibits a
good compromise between reproducibility and generalisability.

Figure 3.9 visualises the functionality and the interactions within the
final Model 13 in a flow diagram. Note in the application domain the sep-
arate calculation of a TOTP value applying MLR and, if applicable, apply-
ing regression trees (alternative TOTP). Figures 3.10 and 3.11 demonstrate
the prognostic performance of the model through time series and scatter-
plots. Quality criteria are given in Table 3.44. Model 13 is significant on the
5.83×10−39 level. Still, there is a slight tendency of the model to better cope
with higher punctualities, i.e. to give better modelling results when mod-
elled punctualities are high. This effect, also referred to as heteroscedasticity,
has already been discussed in the previous sections. It is visualised in Figure
3.13. Both for diagnosis and prognosis, the residuals, i.e. TOTP -TOTPM,AR1

and TOTP -TOTPF,AR1, respectively, are plotted against modelled punctu-
ality. Obviously, in the high punctuality domain, residuals are smaller than
in the low punctuality domain, both for diagnosis and prognosis. Accord-
ing to Backhaus et al. (2003), this is called heteroscedasticity of Type II.
However, when splitting off modelled punctualities larger than 0.7, this effect
diminishes and residual variance is almost constant. Thus, through several

Table 3.44: Quality criteria for Model 13.

quality criterion diagnostic prognostic

MAE 0.049 0.063
RMSE 0.068 0.087
SE 0.069 0.089
rmultiple 0.807 0.768
R2 0.651 0.590
R2

adj 0.648 /
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Figure 3.10: Time series of TOTP, TOTPF and the model error for Model 13. Dashed
lines give twice the standard deviation of TOTP.

model enhancement steps, a significant improvement could be achieved in
modelling medium to low punctuality days. High punctuality days, i.e. days
with punctualities larger than 0.7-0.75 are generally very well modelled on a
higher quality level than lower punctuality days.

Another important issue to look at are correlations among the predictors
used in the final model. In order to achieve stable modelling results, perfect
multicollinearity is to be avoided. For the detection of pairwise dependen-
cies, the correlation matrix for all predictors is calculated and visualised in
Figure 3.12. Note that the constant is excluded from the correlation ma-
trix. The predictors in the correlation matrix are numbered and ordered
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Figure 3.11: Scatterplot of TOTP and TOTPF for Model 13.
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Figure 3.12: Visualisation of the predictors correlation matrix, Model 13.

according to the labelling of the x-axis in Figure 3.14, ignoring the constant.
Obviously, pairwise correlation is no issue among the 16 predictors. The
highest correlation with r = 0.52 is between predictor 1 (ff mean) and pre-
dictor 3 (Ws b MEAN 1 ). The remaining correlation coefficients are below
0.5. This is a good result, especially against the background that no perfect
multicollinearity is generated through linear combination of predictor vari-
ables, either. Thus, multicollinearity is in general no issue for the punctuality
model at hand.

A critical matter in the context of multivariate linear regression is the
stability of predictor coefficients. Different calibration periods and lengths
might in the worst case lead to very different �-coefficients, meaning that the
coefficients are hard to interpret. Special attention has to be paid if coefficient
sign changes occur under use of alternative calibration datasets. Sign changes
are an indication that the corresponding predictor variable might rather be
excluded from the set of predictors as its effect on punctuality is sometimes
positive and sometimes negative. This is of course not desirable.

In order to determine coefficient stability, the resampling method of boot-
strapping (see e. g. Judge et al., 1988) was applied to the dataset, using 1000
simulations and 65% random days from the calibration dataset for each sim-
ulation run to determine the values of the beta coefficients. Figure 3.14 shows
the results of these simulations for each predictor. Given in filled dark green
circles are the �-coefficients calculated for Model 13. The unfilled light green
circles are the mean of the �i obtained by the simulations. The light green
errorbars give ± twice the standard deviation of the �-coefficients from the
simulations. Obviously, all predictor coefficients are very stable, not exhibit-
ing much variation. Mean �i from the simulations and �i from Model 13 are
almost identical for all variables. Moreover, there are no sign changes, indi-
cating that there is an unambiguous effect of each predictor on punctuality.
Beta coefficients are discussed in more detail in Section 3.2.13.2.
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Figure 3.13: Residuals vs. modelled TOTP for identification of heteroscedasticity, Model
13. a) diagnostic mode, b) prognostic mode.

3.2.13.1 Modifications of Model 13

In this section, modifications of Model 13 are discussed, in order to demon-
strate general model stability. In the following, two modifications are made:

1. A variation of the validation period,

2. A reduction of the calibration period.

First, the results through use of different validation periods shall be dis-
cussed. Table 3.45 lists model quality criteria for models with different cali-
bration/validation datasets. The length of the calibration period is 5 years,
each, the length of the validation period is 1 year, respectively. The year
used for validation is given in the header of Table 3.45 and removed from
the calibration dataset. Apparently, both diagnostic and prognostic model
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Figure 3.14: Stability of predictor coefficients, Model 13.

performance are subject to variability. Altogether, diagnostic model perfor-
mance is by far less variable than prognostic model performance. Prognostic
R2-values are between 0.573 for 2001 and 0.682 for 2004. Most notably, for
2003 and 2004 as validation periods, respectively, prognostic model perfor-
mance is better than diagnostic model performance for the remaining cali-
bration dataset. Again, this is to be explained with the variability in TOTP.
Especially 2003 exhibited rather good punctuality performance with only a
small fraction of low punctuality days which are harder to model. In general,
prognostic model performance for the punctuality model at hand is deter-
mined by the amount of low punctuality days in the validation dataset, on
the one hand, and how well representative as well as exceptional events and
their correlation to punctuality are captured through the calibration dataset,
on the other hand. For later analyses, 2006 is in the following used for val-
idation. With focus on prognostic performance, this is, according to Table
3.45, a conservative estimate of model performance without running the risk
of giving overly optimistic results.

The second issue to analyse is to which extent the choice of the length
of the calibration period influences the modelling results. For the present
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Table 3.45: Quality criteria for models with different calibration/validation periods.
The years in the column header are the years used for validation, remaining years from
the period 2001-2006 are used for model calibration.

quality criterion 2001 2002 2003 2004 2005 2006

MAE
diagnostic 0.051 0.051 0.052 0.051 0.051 0.049
prognostic 0.051 0.051 0.046 0.050 0.055 0.063

RMSE
diagnostic 0.072 0.071 0.073 0.072 0.071 0.068
prognostic 0.072 0.072 0.065 0.070 0.078 0.087

SE
diagnostic 0.073 0.072 0.073 0.072 0.071 0.069
prognostic 0.073 0.074 0.067 0.071 0.080 0.089

rmultiple
diagnostic 0.808 0.810 0.802 0.800 0.805 0.807
prognostic 0.757 0.767 0.812 0.826 0.787 0.768

R2 diagnostic 0.653 0.656 0.643 0.640 0.649 0.651
prognostic 0.573 0.588 0.660 0.682 0.620 0.590

R2
adj

diagnostic 0.650 0.654 0.641 0.637 0.645 0.648
prognostic / / / / / /

punctuality modelling, we assume stationarity. In practice, this assumption
is of course not perfectly satisfied as airport organisation and configuration
is adjusted on occasion. Hence, there are basically two competing effects.
On one hand, shorter and thus more actual calibration periods should better
reflect the current airport configuration and the impact of certain events
on punctuality. Longer calibration periods, in that context, might be less
suited to cope with adaptations in the regulatory and operational framework.
On the other hand, longer calibration periods should, in general, give more
stable modelling results, as e.g. unusual weather events are more likely to be

Table 3.46: Quality criteria for models with reduced calibration periods (based on Model
13).

quality criterion 5 years 4 years 3 years 2 years 1 year

MAE
diagnostic 0.049 0.049 0.049 0.049 0.047
prognostic 0.063 0.063 0.062 0.062 0.064

RMSE
diagnostic 0.068 0.069 0.068 0.069 0.068
prognostic 0.087 0.087 0.086 0.087 0.089

SE
diagnostic 0.069 0.069 0.068 0.070 0.070
prognostic 0.089 0.089 0.088 0.089 0.091

rmultiple
diagnostic 0.807 0.811 0.824 0.829 0.834
prognostic 0.768 0.772 0.778 0.774 0.760

R2 diagnostic 0.651 0.658 0.680 0.688 0.695
prognostic 0.590 0.597 0.605 0.600 0.578

R2
adj

diagnostic 0.648 0.654 0.675 0.680 0.680
prognostic / / / / /
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part of the calibration dataset and their effect is thus reflected in the model
coefficients. Moreover, the impact of events is set on a wider base.

Table 3.46 shows the changes in diagnostic and prognostic model perfor-
mance when the model calibration period is successively shortened. The year
2006 is used for validation, years used for calibration are the latest years, al-
ways. Not surprisingly, the highest diagnostic R2-values are achieved using
short calibration periods. With focus on prognostic results, a calibration pe-
riod of 3 years turned out to be most efficient with R2 at 0.605 and MAE at
0.062. The reason for 3 years being the optimal calibration length under the
given basic conditions is not further investigated in this study. According to
these findings, the further use of a 3-year calibration period is suggested and
it is in the following also used for the final punctuality model.

3.2.13.2 The Role of Weather

This section is dedicated to the analysis of the weather impact on punctuality.
First, the importance of weather-related predictors among each other and in
comparison with non-weather related predictors is discussed. As all variables
are normalised, this can be done through comparison of beta coefficients,
which for normalised data are also referred to as beta weights. According
to Garson (2009), beta coefficients only say something about the unique
contribution of each independent variable, but not the joint contributions,
which are reflected in R2 only. Thus, by solely looking at beta weights, one
might underestimate the importance of a variable exhibiting strong joint con-
tributions to R2, but without strong unique contribution. To account for this
effect, correlations between each predictor and TOTP are to be calculated
as well.

Furthermore, beta coefficients are only valid in the respective model at
hand. That means, adding or removing predictors or changing the setup of
the multivariate linear regression approach is likely to lead to different be-
tas. Thus, predictor variable impact is only to be interpreted against the
background of the respective model used. In order to determine the role of

Table 3.47: Fixed set of predictors for Model 13L.

predictors

const ww34b
DayIndex CLc2
TOTFL scheduled ww33b
SH max VV mean 1/x
TOTFL scheduled minus TOTFL ff mean
Hoehenwinde Wt a2 mean
E1 fx24 max
ww31b Wt b2 lim
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Table 3.48: Quality criteria for Model 13L, using both the latest 5 (2001-2005) and 3
years (2003-2005) for calibration and 2006 for validation.

2001-2005 2003-2005
quality criterion diagnostic prognostic diagnostic prognostic

MAE 0.049 0.063 0.048 0.064
RMSE 0.069 0.088 0.067 0.087
SE 0.070 0.090 0.067 0.089
rmultiple 0.800 0.762 0.829 0.765
R2 0.640 0.581 0.687 0.585
R2

adj 0.637 / 0.682 /

weather, it is essential to also include all relevant and significant non-weather
related predictors in the model. Otherwise, estimates of beta coefficients for
weather related predictors are biased, bearing the weight of relevant pre-
dictors omitted. In that context, it should be kept in mind that neither
information on reactionary delay is included in the model as a predictor, nor
information on ground processes/operations having an impact on punctual-
ity.

In the following, two different model versions are discussed: One low reso-
lution model with weather-related predictor variables on a 24-hour basis, only
(see deduction below), and the high resolution Model 13. The low resolution
model, for simplification named Model 13L, is, based on Model 8, deduced the
same way as Model 13 in the beginning of Section 3.2.13 and Section 3.2.13.1.
Likewise, an additional AR(1) correction term is used. Taking Table 3.27 as
a starting point and successively eliminating the 4 predictors exhibiting the
worst p-values (Wt b2 mean ˆ4, N mean, Ws a mean ˆ2, CLc1 ), as intro-
duced in Section 3.2.13, Table 3.47 is obtained, giving the set of the 16 final
predictors for the low resolution model.

For comparison with Model 13 (see Table 3.46), Table 3.48 brings together
model quality criteria for Model 13L, both for the original 5-year calibration
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Figure 3.15: Visualisation of the predictors correlation matrix, Model 13L.
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Figure 3.16: Stability of predictor coefficients, Model 13L.

period and the 3-year calibration period, found as an optimum for Model
13. Also for Model 13L, the 3-year calibration is preferable, exhibiting better
model performance. The prognostic R2 of 0.585 is only 2 percentage points
lower than for the high resolution model. Based on these results, the low
resolution model will, for the analysis of the weather impact, be calibrated
using a 3-year calibration period.

Pairwise correlations among predictors used in Model 13L are unobjec-
tionable with regard to multicollinearity. Highest correlations are between
wind related predictors with a maximum of r = 0.81 between ff mean and
Wt a2 mean. All correlations are visualised in Figure 3.15. Parameter coef-
ficient stability for Model 13L is shown in Figure 3.16.

Table 3.49 lists all predictors used in Model 13L together with their corre-
sponding p-values, �-coefficients and correlations with the predictant TOTP,
in descending order of �i. Additionally, mean values and standard devia-
tions of the �i,B, obtained from the bootstrapping algorithm, are given. The
rather high p-value of 0.26 for fx24 max indicates that this predictor would
be marked for removal through a significance test on an �-level of 0.05. Its
direct impact on TOTP is, however, low, expressed by a low beta weight of
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Table 3.49: Criteria for interpretation of predictor relevance, ordered according to �i,
Model 13L. Also given are p-values, the correlation coefficient r between the predictor and
TOTP as well as mean and standard deviation of the �i,B obtained from bootstrapping.

predictor p-value r �i ∅ �i,B std(�i,B)

const 0 / 0.7844 0.7846 2.54× 10−3

Wt a2 mean 7.54× 10−8 -0.194 0.0269 0.0267 3.86× 10−3

fx24 max 0.26 -0.238 -0.0044 -0.0044 2.89× 10−3

Wt b2 lim 7.33× 10−3 -0.265 -0.0082 -0.0083 3.25× 10−3

CLc2 1.05× 10−3 -0.064 -0.0088 -0.0088 2.92× 10−3

E1 7.78× 10−6 -0.150 -0.0105 -0.0105 2.32× 10−3

ww34b 8.00× 10−8 -0.403 -0.0143 -0.0143 3.05× 10−3

VV mean 1/x 4.57× 10−8 -0.340 -0.0178 -0.0178 3.25× 10−3

ww31b 9.18× 10−10 -0.255 -0.0191 -0.0192 2.66× 10−3

SH max 2.59× 10−8 -0.294 -0.0196 -0.0196 4.11× 10−3

ww33b 3.20× 10−10 -0.399 -0.0197 -0.0195 2.61× 10−3

TOTFL scheduled 9.13× 10−23 -0.047 -0.0256 -0.0255 2.00× 10−3

TOTFL scheduled 1.21× 10−13 -0.413 -0.0277 -0.0274 4.17× 10−3

minus TOTFL
ff mean 7.27× 10−16 -0.364 -0.0491 -0.0489 4.95× 10−3

Hoehenwinde 8.32× 10−241 -0.247 -0.0689 -0.0691 7.67× 10−3

DayIndex 8.32× 10−241 -0.496 -0.0814 -0.0814 6.58× 10−3

-0.0044. Generally, all predictors exhibit a negative correlation with TOTP.
Also, beta weights are, except for one predictor, negative. SolelyWt a2 mean
has a positive beta. That means, increasing the value of a Wt a2 mean leads
to a punctuality increase. Since normalised data is used, the beta weight is
the average amount punctuality increases when the predictor corresponding
to the respective beta, in this case Wt a2 mean, increases one standard de-
viation and other predictors are held constant. The latter is important and
helps to understand the, at first glance, unexpected sign of the beta weight
for Wt a2 mean. Generally, one would assume a negative sign, meaning that
increasing winds lead to lower punctualities. However, there are five wind-
related predictors in the set of predictor variables for this model. Thus, the
wind impact on punctuality is always jointly reflected. Not unexpectedly,
the remaining four wind-related predictors exhibit a negative beta. All other
predictors, continuous, boolean oder enhanced boolean type, can logically
be interpreted. Note that VV mean is transformed and represented by its
reciprocal. That means, higher visibility also leads to higher punctuality.

Generally, model betas and betas from the bootstrapping show no signifi-
cant differences. Thus, model betas are used for further discussion. Standard
deviations of the �i,B are between 2× 10−3 and 5× 10−3, only Hoehenwinde
and DayIndex stick out with higher values.

The highest correlations with TOTP are featured by DayIndex, ww34b
and TOTFL minus TOTFL scheduled with correlation coefficients higher
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Table 3.50: Criteria for interpretation of predictor relevance, ordered according to �i,
Model 13. Also given are p-values, the correlation coefficient r between the predictor and
TOTP as well as mean and standard deviation of the �i,B obtained from bootstrapping.

predictor p-value r �i ∅ �i,B std(�i,B)

const 0 / 0.7840 0.7841 2.51× 10−3

Ws b MEAN 1 1.02× 10−4 -0.080 0.0100 0.0100 2.31× 10−3

ww32b 3 8.24× 10−6 -0.036 -0.0097 -0.0097 2.14× 10−3

E1 3 3.20× 10−7 -0.114 -0.0113 -0.0112 2.19× 10−3

Wt a1 MEAN 3 ˆ4 5.42× 10−5 -0.136 -0.0138 -0.0138 3.88× 10−3

Wt b2 lim 1 7.53× 10−9 -0.219 -0.0159 -0.0155 2.72× 10−3

VV MEAN 1 1/x 6.26× 10−8 -0.287 -0.0166 -0.0173 4.07× 10−3

RRR 2 sqrt 4.91× 10−14 -0.227 -0.0191 -0.0189 2.68× 10−3

TOTFL scheduled 7.80× 10−16 -0.047 -0.0199 -0.0200 1.73× 10−3

ww31b 2 3.58× 10−13 -0.267 -0.0199 -0.0197 3.75× 10−3

SH MAX 3 2.05× 10−11 -0.298 -0.0233 -0.0234 4.09× 10−3

ww34b 2 3.61× 10−24 -0.384 -0.0243 -0.0243 2.68× 10−3

TOTFL scheduled 1.18× 10−15 -0.413 -0.0296 -0.0293 4.10× 10−3

minus TOTFL
ff mean 1.40× 10−29 -0.364 -0.0335 -0.0335 2.89× 10−3

Hoehenwinde 1.22× 10−245 -0.247 -0.0793 -0.0792 7.36× 10−3

DayIndex 1.22× 10−245 -0.496 -0.0894 -0.0894 6.04× 10−3

than 0.4. However, interpretation of correlations of simple boolean predic-
tors such as Hoehenwinde and DayIndex is difficult. Also ww33b, ff mean
and VV mean 1/x exhibit a high correlation with TOTP. With regard to
beta coefficients, highest absolut values, synonymous with the highest direct
model impact on TOTP, are found for DayIndex, Hoehenwinde, ff mean,
Wt a2 mean and the traffic-related predictors. Note again that DayIn-
dex and Hoehenwinde are purely boolean and thus rather interpreted as an
if/then-switch, indicating the effect of the presence or absence of the respec-
tive event.

To summarise, the most relevant predictors found are, besides DayIn-
dex, those bearing information on traffic (TOTFL scheduled, TOTFL minus
TOTFL scheduled), wind (ff mean, Wt a2 mean, Hoehenwinde), precipita-
tion (ww33b, ww34b) and visibility (ww31b, VV mean 1/x ). Note that the
joint effect of all windspeed-related predictors is a reduction of punctual-
ity with increasing wind speeds. Valuable model input is also drawn from
information on winterly weather conditions (SH max, ww34b).

Table 3.50 gives results corresponding to Table 3.49, but for the high-
resolution Model 13. Generally, results are very similar. However, through
higher resolution of weather-related predictors, some predictor variables drop-
ped out of the set of predictors and others were picked. For example, ww33b x
is not included for any time interval x. In the high resolution model, the
precipitation impact is represented by RRR 2 sqrt. Amongst wind-related
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predictors there were some replacements as well. Most notably, information
on the presence of thunderstorms (ww32b 3 ) is now directly included.

Again, all predictor correlations with TOTP are negative. And again,
there is one wind-related predictor (Ws b mean 1 ) with a positive beta weight.
All remaining betas are negative. Coefficient stability is good, there are no
significant deviations of �i and mean(�i,B). Standard deviations of the �i,B
are comparable with those obtained for the low resolution model. Besides
DayIndex, Hoehenwinde, ff mean and TOTFL minus TOTFL scheduled, al-
ready discussed in the results for Model 13L, ww31b 2, ww34b 2, SH MAX 3
and VV mean 1 1/x exhibit a high correlation with TOTP, closely followed
by RRR 2 sqrt and Wt b2 lim 1. Regarding beta weights, largest direct
model impact is again through DayIndex, Hoehenwinde, ff mean and the
traffic-related predictors. Concerning high resolution weather predictors,
solid precipitation (ww34b 2 ) and low visibility (ww31b 2 ) between 6 and
12UTC, as well as snow height between 12 and 18UTC exhibit high abso-
lute betas. Also general precipitation (RRR 2 sqrt) between 6 and 12UTC
and low visibility in the early morning (VV mean 1 1/x ) have a large impact.

From the analyses of both the high and the low resolution models, the fol-
lowing can be summarised. For punctuality modeling, traffic is an important
factor and should be part of the set of predictors. A DayIndex variable should
be used as a scenario switch if unusual events occurred or are expected. This
way, the modelling approach at hand also works for days with e.g. strikes
or system failures and goes without the a-priori elimination of those days.
With focus on weather related predictors, the following is found. Informa-
tion on upper level winds emerged as non-negligible. In the set of predictors,
there should be at least one variable representing general precipitation. In
addition, a predictor related to solid precipitation or snow height proved to
be of high relevance. Low visibility conditions have to be represented, as
well, either through a fog related predictor or through general meteorological
visibility or RVR, respectively. Information on frozen ground proved to be a
valuable add on information. In contrast, a thunderstorm related predictor
turned out to be of lower relevance. Obviously, critical weather phenomena
connected to thunderstorms, like e.g. heavy precipitation or strong winds, are
better separately represented by single predictors instead of a global thun-
derstorm predictor. Regarding wind-related variables, two predictors proved
to be of high significance: the average daily wind speed (ff mean) and the
exceedance of the tailwind limit on RWY18 (Wt b2 lim). Additional predic-
tors describing head-/tailwind and crosswind relative to the runways proved
to further increase model quality. Regarding cloud related predictors, only
information on thunderstorm clouds (CLc2 ) turned out to be relevant.

After discussion of the significance of weather and non-weather-related
predictors, it is shortly analysed how well a pure weather based model per-
forms compared to a full model as above. In that context, the focus is on
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Table 3.51: Fixed set of predictors for Model 13wL. The numbers in brackets are the
percentage of selections for the moving 1-year, 3-year and 5-year window. The stroke out
predictors were eliminated through analysis of p-values, in order of the numbers attached.

predictors

const (100, 100, 100) RRR mean sqrt (34.7, 49.3, 100)
SH max (91.5, 98.0, 100) Wt a2 mean (20.5, 48.5, 100)
ww31b (75.2, 100, 100) TT mean2 (58.5, 61.2, 96.2)
ww34b (73.3, 100, 100) VV min log1 (23.5, 14.0, 89.9)
E1 (68.0, 100, 100) N mean (17.8, 28.6, 80.9)
Hoehenwinde (66.9, 100, 100) Wt b2 lim (35.9, 69.4, 77.3)
DayIndex (59.7, 100, 100) P0 mean4 (20.6, 35.1, 69.1)
CLc2 (50.7, 99.5, 100) ww33b (32.7, 37.8, 63.1)
VV mean 1/x (49.8, 100, 100) Ws a mean ˆ2 (46.7, 59.1, 44.3)
ff mean (45.6, 78.3, 100) Wt b2 mean ˆ43 (39.8, 30.6, 47.5)

general model quality, e.g. represented byR2, and not on single predictors and
their individual impact on punctuality. The key question is: How much of the
variability in TOTP can be explained by weather only? In order to answer
this question, both Models 13 and 13L were reduced to finally include only
weather-related predictors. Table 3.51 shows the final set of predictors for a
low resolution weather-only model, named Model 13wL. Table 3.52 gives the
respective set of predictors for a high resolution weather-only model (Model
13w). The procedure for variable selection is as described in the beginning of
Section 3.2.13, with 20 predictors as a starting point and successive elimina-
tion of the four variables exhibiting the worst p-values (stroke out in Table
3.51). However, this time only a 3-year (2003-2005) calibration period was
used at the outset, as this has already been found preferable (see Section
3.2.13.1). Note that DayIndex only includes information on the CAT stage,
which, in turn, is based on visibility and cloud base.

Table 3.52: Fixed set of predictors for Model 13w. The numbers in brackets are the
percentage of selections for the moving 1-year, 3-year and 5-year window. The stroke out
predictors were eliminated through analysis of p-values, in order of the numbers attached.

predictors

const (100, 100, 100) SH MAX 1 (32.1, 40.9, 100)
Hoehenwinde (70.7, 100, 100) r1 MEAN 3 sqrt (28.2, 23.7, 99.5)
ww31b 2 (65.9, 100, 100) Wt a1 mean 3 ˆ4 (45.8, 81.8, 97.0)
ww34b 2 (62.1, 100, 100) ff MEAN 31 (29.3, 46.6, 96.7)
DayIndex (51.5, 100, 100) RRR 1 sqrt (51.3, 53.7, 95.1)
ff mean (49.1, 77.3, 100) RR1 MAX 1 sqrt (43.0, 53.5, 95.1)
ww32b 3 (45.5, 61.1, 100) Ws b MEAN 1 (19.7, 45.1, 94.0)
E1 1 (42.6, 74.9, 100) VV MEAN 1 1/x (27.4, 50.1, 93.7)
RRR 2 sqrt4 (38.5, 49.6, 100) Wt b1 MEAN 12 (26.3, 42.2, 90.7)
Wt b2 lim 1 (34.7, 35.4, 100) ww31b 13 (11.3, 22.3, 90.7)
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Table 3.53: Quality criteria for Model 13wL, without and with AR(1) component, using
2003-2005 for calibration and 2006 for validation.

without AR(1) with AR(1)
quality criterion diagnostic prognostic diagnostic prognostic

MAE 0.056 0.078 0.052 0.070
RMSE 0.081 0.107 0.075 0.098
SE 0.081 0.110 0.076 0.100
rmultiple 0.738 0.652 0.776 0.706
R2 0.545 0.425 0.603 0.499
R2

adj 0.538 / 0.596 /

Table 3.54: Quality criteria for Model 13w, without and with AR(1) component, using
2003-2005 for calibration and 2006 for validation.

without AR(1) with AR(1)
quality criterion diagnostic prognostic diagnostic prognostic

MAE 0.058 0.076 0.054 0.070
RMSE 0.082 0.105 0.077 0.096
SE 0.083 0.107 0.078 0.098
rmultiple 0.728 0.682 0.765 0.730
R2 0.530 0.465 0.585 0.533
R2

adj 0.522 / 0.578 /

The focus now is not on an interpretation of predictors chosen, but on
model results that can be achieved using one of the above weather-only mod-
els. Using a 3-year calibration period (2003-2005), Model 13wL is significant
on the 7.66 × 10−19 level. Quality criteria for this model are given in Table
3.53. Doing the same for the high resolution model, results shown in Ta-
ble 3.54 are obtained. This model is significant on the 9.48 × 10−19 level.
Comparing the results of both models, the low resolution model exhibits
slightly better diagnostic performance. The high resolution model, how-
ever, performs much better in prognostic mode. In order to determine the
variability in TOTP that can solely be explained by weather, the inclusion
of an AR(1) correction algorithm is, in principle, not indicated, as general
times series information in TOTP is evaluated. In the first place, this in-
formation is not directly related to weather. Thus, only the combination of
multivariate linear regression and regression trees is initially used. In the
broader sense, however, using an AR(1) correction term does not involve any
further, non-weather related predictors. It is a pure mathematic correction
approach which exploits the additional potential for explanation power, using
only weather-related predictors and the predictant TOTP itself as an input.
Thus, an AR-enhanced model is consulted for evaluations, as well.

Focusing on diagnosis results and falling back on the high resolution
model, weather alone can explain more than 50% of the variability in TOTP.
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When focusing on the more realistic prognostic results, weather can still be
attributed 46.5% of the variability in TOTP. When also exploiting time se-
ries information through inclusion of an AR-term, a diagnostic R2 of almost
0.6 and a prognostic R2 of more than 0.5 can be achieved through an AR-
enhanced weather-only model.

3.3 Punctuality Forecast

This section is dedicated to punctuality forecasting. The inherent question
is: Can a modified punctuality model, based on the previously introduced
models, be used for a punctuality forecast for a day in the future? Two
issues evolve from this question. On one hand, it has to be shown, what
quality level can be accomplished using a model in prognostic mode, when
only predictable input variables are used. This is essential as, for a real
forecast model, input for predictor variables has to be forecasted. With
regard to weather-related predictor variables, this input can be obtained
from NWP models, if necessary enhanced by a MOS system. Information
on scheduled traffic is also available beforehand, as schedules are made on a
long time basis and experience only slight short-term adaptations. Derivative
predictors like Mix and CAT, as part of the predictor DayIndex, are based
on weather-dependent thresholds and can thus potentially be forecasted, as
well. The subsequent question is, how well weather events can actually be
forecasted. In that respect, special focus is on critical event-driven predictors
like ww3xb or problematic variables like e.g. visibility, where forecast quality
is still unsatisfactory. The quality of NWP or MOS models, respectively,
generally has a large impact on the quality of a punctuality forecast model.
The worse the weather prediction and, accordingly, the larger the discrepancy
between forecasted weather and weather occurred, the worse the forecast of
punctuality. In that respect, weather forecast errors add to the model errors
of the punctuality model itself.

Within this study, the question of weather forecast quality shall not be
further discussed. Rather, the focus is on an analysis of the forecast potential
of the methods introduced and the definition and specification of a final
punctuality forecast model. This can then be used for a true forecast of
TOTP, if input for predictor variables is provided for a day in the future.
Within this section, the term ”forecast model” is in the following used for a
punctuality model applied in prognostic mode using only predictable input
variables as described above. The terms ”true forecast” and ”real forecast”
are reserved for models which are fed with forecasted predictor variables,
which are, in the case of weather-related predictors, taken from NWP/MOS
output. This section focuses on forecast models. The enhancement step to a
real forecast is only touched in Section 4.3.
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Table 3.55: Fixed set of predictors for a low resolution Forecast Model not including
predictors related to upper level wind. The numbers in brackets are the percentage of
selections for the moving 1-year, 3-year and 5-year window. The stroke out predictors
were eliminated through analysis of p-values, in order of the numbers attached.

predictors

const (100, 100, 100) Ws a mean ˆ2 (39.3, 74.0, 100)
TOTFL scheduled (100, 100, 100) Wt a2 mean (34.7, 37.9, 100)
SH max (97.2, 99.5, 100) CLc1 (33.9, 71.4, 100)
ww31b (72.8, 100, 100) fx24 max (25.2, 49.2, 100)
Wt b2 lim (72.5, 97.9, 100) TT mean4 (30.7, 56.2, 98.4)
E1 (69.6, 100, 100) h mean log2 (31.7, 62.7, 98.1)
ww34b (65.2, 100, 100) N mean3 (19.4, 56.2, 97.8)
DayIndex (64.9, 100, 100) RRR mean sqrt (33.6, 66.9, 95.6)
ff mean (55.6, 92.8, 100) VV mean 1/x (36.1, 90.5, 87.7)
ww33b (54.1, 94.0, 100) h max1 (3.1, 26.3, 86.3)

In order to find the model best suited for a punctuality forecast, four
model versions are discussed: two low and two high resolution models, with
and without predictors related to upper level wind, respectively. Table 3.55
shows the final set of predictors for the low resolution model without upper
level wind predictors. The procedure is as described in the previous sections,
using the preferred 3-year calibration period 2003-2005 for general model
calibration and for the elimination of the four predictors exhibiting the worst
p-values, leaving 16 final predictor variables in each model. Note that in the
forecast model, DayIndex only contains archived information on the CAT-
stage as declared by local ATC. Table 3.56 gives the results for this model,
with and without an AR(1) component, respectively. An AR-correction value
can – theoretically – be calculated, if the model error is known for day x-1
when forecasting punctuality for day x, using the lag-1 correlation coefficient
obtained from the calibration procedure. The model at hand is significant
on the 4.06× 10−21 level.

Table 3.56: Quality criteria for a low resolution Forecast Model not including predictors
related to upper level wind, without and with AR(1) component, using 2003-2005 for
calibration and 2006 for validation.

without AR(1) with AR(1)
quality criterion diagnostic prognostic diagnostic prognostic

MAE 0.055 0.072 0.053 0.067
RMSE 0.078 0.101 0.074 0.093
SE 0.079 0.104 0.075 0.096
rmultiple 0.758 0.678 0.783 0.730
R2 0.575 0.460 0.613 0.533
R2

adj 0.568 / 0.607 /



100 CHAPTER 3. RESULTS

Table 3.57: Fixed set of predictors for a low resolution Forecast Model including predic-
tors related to upper level wind. The numbers in brackets are the percentage of selections
for the moving 1-year, 2-year and 3-year window. The stroke out predictors were elimi-
nated through analysis of p-values, in order of the numbers attached.

predictors

const (100, 100, 100) CLc2 (54.4, 80.2, 98.6)
TOTFL scheduled (100, 100, 100) CLc1 (51.6, 81.8, 95.4)
SH max (99.5, 100, 100) max Tangentialwind a head ge25
Wt b2 lim (96.8, 100, 100) (27.9, 49.4, 77.3)
ww31b (85.0, 97.9, 100) ww33b (33.1, 71.4, 56.8)
ww34b (76.6, 100, 100) Ws b mean4 (34.7, 71.3, 44.5)
E1 (69.9, 99.9, 100) N mean2 (11.6, 19.2, 65.6)
DayIndex (69.8, 94.1, 100) VV mean 1/x (27.1, 55.4, 62.0)
Ws a mean ˆ2 (68.1, 92.3, 99.7) max Tangentialwind a head ge15
h mean log1 (55.1, 73.5, 98.9) (15.1, 40.1, 60.7)

max Tangentialwind a tail ˆ2
(35.2, 35.8, 59.3)
RRR mean sqrt3 (23.5, 53.2, 54.6)

Table 3.57 shows the fixed set of predictors for a low resolution forecast
model, which contains predictors related to upper level wind. Table 3.58 gives
the quality criteria for this model, which is significant on the 1.62 × 10−21

level. Both models, without and with information on upper level winds,
achieve good results in prognostic mode. Diagnostic results are given for
comparison only and not further discussed. Prognostic R2-values are around
0.45 without an AR component and larger than 0.5 when an AR(1) correc-
tion term is included. Comparing the two low resolution models, the model
without inclusion of predictors related to upper level wind performs better,
consulting both model errors and R2-values.

The two low resolution models are in the following compared with two
high resolution forecast models. Table 3.59 lists the final set of predictors
for a high resolution forecast model without predictors related to upper level

Table 3.58: Quality criteria for a low resolution Forecast Model including predictors
related to upper level wind, without and with AR(1) component, using 2003-2005 for
calibration and 2006 for validation.

without AR(1) with AR(1)
quality criterion diagnostic prognostic diagnostic prognostic

MAE 0.055 0.072 0.052 0.068
RMSE 0.077 0.102 0.074 0.095
SE 0.078 0.105 0.075 0.098
rmultiple 0.764 0.664 0.785 0.713
R2 0.584 0.441 0.616 0.508
R2

adj 0.577 / 0.610 /
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Table 3.59: Fixed set of predictors for a high resolution Forecast Model not including
predictors related to upper level wind. The numbers in brackets are the percentage of
selections for the moving 1-year, 3-year and 5-year window. The stroke out predictors
were eliminated through analysis of p-values, in order of the numbers attached.

predictors

const (100, 100, 100) RRR 2 sqrt (42.7, 55.3, 100)
TOTFL scheduled (100, 100, 100) E1 1 (38.9, 91.2, 100)
ww31b 2 (71.2, 100, 100) E1 4 (33.1, 71.8, 100)
ww34b 2 (65.0, 100, 100) ww34b 42 (30.0, 44.3, 100)
ff mean (62.9, 80.7, 100) Wt b2 lim 1 (17.4, 27.3, 100)
RRR 1 sqrt3 (58.7, 59.5, 100) SH MAX 3 (54.8, 43.5, 99.7)
DayIndex (55.9, 94.4, 100) VV MIN 1 log (34.4, 57.5, 99.7)
RR1 MAX 1 sqrt4 (48.2, 59.1, 100) VV MEAN 1 1/x (22.3, 56.2, 99.7)
Wt a1 MEAN 3 ˆ4 (48.2, 85.5, 100) ww31b 1 (8.4, 41.9, 99.7)
ww32b 3 (47.6, 74.8, 100) fx24 max1 (31.7, 82.2, 98.9)

wind. This model is significant on the 3.35×10−19 level. The results achieved
with this model are given in Table 3.60. Prognostic performance of this
high resolution model is better than for the respective low resolution model,
independent of the use of an additional AR(1) correction component. Hence,
for the purpose of punctuality forecast, the use of a high resolution model is
recommended.

It remains to be analysed, if an implementation of predictors related to
upper level wind leads to an additional increase of prognostic model perfor-
mance. Table 3.62 shows the results for a high resolution forecast model
including predictors on upper level wind, using the final set of predictors
listed in Table 3.61. Note that two predictors describing upper level winds
are part of this final set. This high resolution model is significant on the
4.17× 10−19 level.

Unlike with the low resolution model, the inclusion of predictors related
to upper level wind produces a significant improvement of prognostic model

Table 3.60: Quality criteria for a high resolution Forecast Model not including predictors
related to upper level wind, without and with AR(1) component, using 2003-2005 for
calibration and 2006 for validation.

without AR(1) with AR(1)
quality criterion diagnostic prognostic diagnostic prognostic

MAE 0.058 0.070 0.054 0.065
RMSE 0.081 0.099 0.077 0.091
SE 0.082 0.101 0.077 0.094
rmultiple 0.732 0.703 0.766 0.746
R2 0.536 0.494 0.587 0.557
R2

adj 0.529 / 0.581 /
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Table 3.61: Fixed set of predictors for a high resolution Forecast Model including predic-
tors related to upper level wind. The numbers in brackets are the percentage of selections
for the moving 1-year, 2-year and 3-year window. The stroke out predictors were elimi-
nated through analysis of p-values, in order of the numbers attached.

predictors

const (100, 100, 100) max Tangentialwind a head 2 ˆ4
TOTFL scheduled (100, 100, 100) (35.4, 32.4, 97.8)
RRR 1 sqrt (89.1, 77.0, 100) E1 1 (38.1, 53.5, 93.2)
ww31b 2 (77.0, 100, 100) Wt b2 lim 1 (38.2, 81.3, 92.9)
ww34b 2 (69.4, 92.7, 100) CLc1 12 (26.5, 58.5, 92.9)
RR1 MAX 1 sqrt (67.2, 84.8, 100) ww33b 3 (42.0, 76.2, 91.8)
VV MEAN 3 1/x (35.6, 95.1, 100) E1 44 (24.2, 55.4, 90.4)
SH MAX 3 (54.3, 55.5, 99.7) CLc2 2 (64.8, 89.1, 76.5)
max wind gt35 3 (30.1, 59.6, 99.7) Wt b2 lim 3 (20.5, 45.0, 87.7)
ww34b 43 (40.8, 73.1, 97.8) VV MIN 2 log (36.6, 87.6, 82.2)

Wt a1 MEAN 1 ˆ41 (8.8, 4.2, 81.4)

performance. Even without the use of an AR(1)-correction, prognostic R2 is
at 0.531 and thus significantly higher than for both low resolution models.
Using an additional AR(1)-correction term, prognostic R2 experiences an-
other significant step and reaches a value of almost 0.6, which is very close to
results obtained for the full model introduced in Section 3.2.13. Diagnostic
and prognostic results are, in that respect, on the same level. Also regarding
prognostic model errors, this enhanced forecast model performs astonishingly
well. MAE is at 0.064 and RMSE at 0.088.

Based on the results from the four forecast models, it is found that best
prognostic performance is to be expected, when a high resolution model is
used and information on upper level winds is included. Taking into account
that the quality of the latter information could be further improved (also see
analysis in Section 2.2.3.1), another increase in model performance can be
assumed. Generally, the forecast of upper level winds is of high quality and

Table 3.62: Quality criteria for a high resolution Forecast Model including predictors
related to upper level wind, without and with AR(1) component, using 2003-2005 for
calibration and 2006 for validation.

without AR(1) with AR(1)
quality criterion diagnostic prognostic diagnostic prognostic

MAE 0.058 0.069 0.054 0.064
RMSE 0.081 0.094 0.078 0.088
SE 0.082 0.096 0.078 0.090
rmultiple 0.733 0.729 0.761 0.766
R2 0.537 0.531 0.579 0.586
R2

adj 0.530 / 0.573 /
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Figure 3.17: Time series of TOTP, TOTPF and the model error for the high resolution
Forecast Model including predictors related to upper level wind. Dashed lines give twice
the standard deviation of TOTP.

predictors can easily be extracted from NWP output.

To simplify matters, the final forecast model – the high resolution model
with predictors related to upper level wind – is in the following referred to
as Forecast Model. Figure 3.17 visualises the potential of the Forecast Model
in a time series for 2006. Figure 3.18 shows even better that not only the
high punctuality domain is well reproduced, but also in the low punctuality
domain model results are on a good quality level.

Correlations among predictors, visualised in Figure 3.19, are generally
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Figure 3.18: Scatterplot of TOTP and TOTPF for the high resolution Forecast Model
including predictors related to upper level wind.
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Figure 3.19: Visualisation of the predictors correlation matrix for the high resolution
Forecast Model including predictors related to upper level wind.

unproblematic. Only predictors 4 (RRR 1 sqrt) and 5 (RR 1 MAX 1 sqrt)
exhibit a high correlation with r = 0.948. Since both predictors are connected
to the first time block, it is to be deliberate whether either of them is removed
from the set of predictors. For our purpose, it is, however, not considered
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Figure 3.20: Stability of predictor coefficients for the high resolution Forecast Model
including predictors related to upper level wind.
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Figure 3.21: Residuals vs. modelled TOTP for identification of heteroscedasticity in
the high resolution Forecast Model including predictors related to upper level wind. a)
diagnostic mode, b) prognostic mode.

as both predictors exhibit high p-values of 1.37 × 10−8 and 2.42 × 10−5,
respectively.

Beta coefficients for the Forecast Model are stable, as shown in Figure
3.20. The underlying bootstrapping procedure is described in Section 3.2.13.
Apart from CLc2 2, all betas point to a clear positive or negative impact
on punctuality. For CLc2 2, model beta and the average beta obtained by
bootstrapping coincide well, and the assumed effect on punctuality is clearly
negative. Interestingly, there is a complex interaction of predictors related
to precipitation in the first time block. As shown in the previous paragraph,
those two predictors are well correlated. Thus, their effect on punctuality
may not be interpreted by solely looking at their beta weights. Rather, they
may only be considered together. Removing either of them is likely to result
in a clearly negative beta weight for the remaining predictor.
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The issue of heteroscedasticity has already been discussed in Section
3.2.13. Figure 3.21 shows the corresponding plots for the Forecast Model.
Not surprisingly, heteroscedasticity of Type II is again found. However, gen-
eral model quality is on a level, which allows for a meaningful punctuality
forecast in all punctuality domains.

These encouraging results give rise to a successful implementation of an
operational punctuality forecast system at major airports. For Frankfurt
Airport, a graphical user interface has already been developed. It can be
used for special punctuality analyses as well as for a true punctuality forecast
– based on the Forecast Model introduced in this section – if forecasted input
for predictor variables is provided.



Chapter 4

Conclusions, Limitations and
Outlook

4.1 Conclusions

The present work deals with the subject of punctuality modelling. The statis-
tical methods chosen are multivariate linear regression, regression trees and
AR-models. Input information comprises weather, traffic, punctuality and
operational data from Frankfurt Airport for a 5-year period. The study at
hand represents a logical and consequent continuation of the work previously
done in the area of punctuality modelling. It builds directly on ideas devel-
oped by Spehr (2003) and refines these to a point, where the quality of the
models constructed finally allows for a true punctuality forecast. Suggestions
for improvement made by Spehr were seized and, when proven meaningful,
integrated in enhanced models. In this process, modelling was expanded to
a larger database to test generalisability and stability.

The basic findings of the research done in this work can be summarised as
follows. First of all, it was proven that total daily airport punctuality can be
statistically modelled as a function of few, mostly meteorological predictor
variables with an R2 between 0.5 and 0.7. The final model is visualised in
Figure 3.9. It is based on multivariate linear regression and uses an additional
AR-correction term as well as a complex regression-tree correction algorithm.
It was shown in Section 3.2.13 that modelling results are of good quality,
independent of the time chosen for calibration and validation. In that respect,
it could be abstained from the exclusion of certain days, e.g. days with non-
weather related events like strikes or system failures, from the modelling data
base, as done by Spehr. Rather, a complete modelling was aimed for and
realised.

Through application of enhanced approaches, individually introduced in
Sections 3.2.2-3.2.13, modelling results could be significantly improved over
results achieved by Spehr. In prognostic mode, up to 60% of the variabil-
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ity of TOTP could be explained using a fixed set of only 16 high resolution
predictor variables. These represent the most significant factors having an
impact on punctuality at Frankfurt Airport. Likewise, other potential pre-
dictor variables were revealed as non-significant.

Furthermore, the relevance of weather with regard to punctuality was
quantified without falling back on error-prone delay code systems. It was
found that using weather-related predictor variables only, an R2 of more than
0.45 can be achieved. Moreover, the weighting of impact factors, weather and
non-weather related, was discussed against the background of the fixed set
of predictors. As a result, it was found that at least five groups of predictors
need to be represented when punctuality at Frankfurt Airport is to be mod-
elled: precipitation, low visibility conditions, winds and upper level winds,
solid precipitation/snow cover and traffic. Additional predictors describing
weather in more detail lead to a higher model quality.

Based on these findings, the true forecast potential of the models devel-
oped was analysed. A conservative assessment revealed that almost 60% of
the variability in TOTP can be explained when only predictable variables
are used as predictors. That means, model quality has for the first time
reached a level where a true punctuality forecast is within the realms of pos-
sibility. In that regard it was found that a model calibration period of 3
years is favourable, exhibiting enough information for proper event represen-
tation, on the one hand, and timeliness with focus on schedule adaptations
and operational process optimations, on the other hand.

4.2 Limitations

The present work represents a significant step in the understanding of the
weather impact on air traffic delays. It avails oneself with independent anal-
ysis methods and is to be understood as a top-down approach to punctuality
modelling. Unlike in a bottom-up approach where all individual processes
are modelled, it does not draw upon either single process simulations, on the
one hand, or evaluations based on delay codes, on the other hand. Compared
to the bottom-up approach, the present work is of course a simplification, as
processes are not looked at in detail. That means, in particular, that delay
causing processes during aircraft turnaround are not directly captured. This
is of course a weakness of the present approach as a significant delay impact
factor – ground processes and operations – is not directly included.

A second drawback of the modelling approach at hand is to be attributed
to the non-availability of information on imported delay. Imported delay,
however, represents a significant fraction of total delays as during aircraft
rotation, reactionary delay is produced due to the complexity and intercon-
nectivity of air traffic schedules, especially at large hub airports. A delay
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produced in the morning can thus be transported, spread and multiplied
through schedules in the course of day. The second difficulty with regard
to imported delay is the question on how to properly incorporate it into a
punctuality modelling approach. Truly, delay produced outside an assumed
weather correlation radius as described in Section 1.4 is likely to have nothing
to do with conditions at Frankfurt Airport. However, also in that case there
might be a causal relationship, as ATM in certain cases, e.g. when capacity at
Frankfurt Airport is degraded due to adverse weather, may, through GDPs,
take appropriate action and hold back aircraft with destination Frankfurt.
In order to distinguish these cases from other cases, delay codes have to
be considered. However, this makes analyses much more complicated and
unreliable, as delay codes are, through inappropriate or incorrect use, a con-
troversial means of information. Moreover, it is not foreseeable, what effect
an incorporation of information on imported delay would have on modelling
results. A quality rise is to be expected as other studies (see e.g. Hansen and
Wei, 1999; Hansen and Bolic, 2001) pointed to origin airport congestion
being a major source of delay variation. However, a significant effort has to
be put in a proper model integration.

It has to be noted, as well, that the approach at hand is a purely local
approach. All predictor variables created and used for punctuality modelling
are local. Of course, and as already stated above, delays are not only locally
produced. Besides ordinarily imported delay, delay can also be produced en-
route, either through sector overload or simply by adverse weather. These
factors are not directly incorporated into the present modelling. However,
they are indirectly considered, as weather at point x is to a certain extent
often correlated with weather at point y, with decreasing correlation the
larger the distance between the two points is. When modelling punctuality
on a daily level, using representative local predictors only is thus comparable
with using information for a larger catchment area.

When a higher temporal model resolution is aimed for, the issue of deter-
ministic delay comes into play. As discussed above, imported delays account
for a major fraction of overall delays. This is all the more the case when
punctuality is to be modelled on an hourly or even minute-by-minute level.
The dominating stochastic nature of delay when analysed on a daily level
is being gradually replaced by a deterministic nature on finer time scales.
Then, delay rather has to be considered on a flight-by-flight level, where the
current delay status of flights arriving or departing at the airport of interest
within the next reference period is taken into consideration for punctuality
assessment and projection.

With respect to the role of weather in the context of air traffic delays
and punctuality, one remark has to be made. Generally, weather acts as a
governing factor with respect to the production and development of delays.
Though weather is sometimes not the primary source of a delay in the sense



110 CHAPTER 4. CONCLUSIONS, LIMITATIONS AND OUTLOOK

of a causal relationship, there, nevertheless, often exists a correlation with
other delay causing factors, which are not directly captured and discussed.

Last but not least, the mathematical approach in this work exhibits ad-
vantages and disadvantages and it is of course one among many possible
approaches. The limitations with regard to the used input data and the
mathematical constraints are well considered. Especially the problem of
different punctuality domains with corresponding model results on differ-
ent quality levels is noted and discussed. Yet, the quality of the achieved
modelling results clearly indicates that there is a benefit from the chosen ap-
proach. It is as well thinkable to use e.g. cluster methods or neural networks
for punctuality modelling. However, interpretation then becomes rather dif-
ficult. Many studies on similar research topics have, as well, revealed that
alternative methods often offered at most comparable or even worse predic-
tive skill than methods applied in the present study. Hansen and Bolic

(2001), for example, emphasised that the content of the used delay model, i.e.
the included predictors, is more important than the form of modelling. In the
context of the hybrid approach chosen it has to be pointed out that interac-
tion terms are intentionally not considered, either. These terms may improve
modelling results, but at the expense of a far larger and more complex pre-
dictor database. Furthermore, interaction terms are particularly prone to
multicollinearity. Rather, non-linear effects are tackled through non-linear
variable transformations in combination with a comprehensible correction
algorithm.

Altogether, there is still potential for model improvements, either through
methodical enhancements or refinement and enlargement of the input database.
It is well noted that the dataset at hand is just a restricted dataset of a lim-
ited length. A competing effect with regard to the assumption of stationar-
ity, which is assumed in order to apply the statistical methods chosen in this
study, is the existence of an underlying system variability as a consequence of
an ever-changing airport infrastructure. Hence, no perfect punctuality mod-
elling is ever to be expected as there always remains room for uncertainty.
Finally, annual and interannual variability of determining factors will set a
threshold for achievable model quality.

4.3 Summary and Outlook

This study is the first study known so far which, as a major result, comprises
an analysis of the potential of reliable medium-term punctuality forecast-
ing. If forecasts of weather and traffic are provided, the approach chosen
allows for a prediction of total daily punctuality for several days in advance.
It was shown that validating the Forecast Model on independent data pro-
duced good modelling results with an R2 of almost 0.6. Further model im-
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provements might be achieved through the incorporation of information on
imported delays as described above. However, a significant effort is likely to
be spent in a meaningful model modification, especially when focusing on
forecasting punctuality, where input for predictor variables has to be known
in advance. A further rise of model quality is also to be expected, when de-
lay generating ground processes are reflected through inclusion of respective
information. Last but not least, the introduction of en-route weather infor-
mation or even weather data from destination airports and airports of origin
for flights operating at Frankfurt Airport might as well lead to significant
model quality improvements.

The next step in the development of an operational punctuality fore-
cast system is the application of forecasted weather for validation. This has
already been partly tried with rudimentary MOS forecast data used in a sim-
plified Forecast Model. Results obtained through this preliminary approach
were surprisingly good. The difficulty, in that regard, consists in an optimi-
sation of predictions for critical weather related predictors such as e.g. low
visibility or snowfall. Reliable and non-conservative predictions of these key
predictors are essential for an acceptable model sensibility and skill.

In a further step it is thinkable to also calibrate the model on forecasted
data. This requires the availability of archived weather forecasts, ideally for
the past 3 years, as shown in Section 3.2.13.1. The effects of this approach
are not foreseeable and the quality of results obtained through this approach
will be strongly depending on the quality of NWP/MOS forecasts and their
potential to actually reflect weather occurred.
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Appendix A

Arrival Rate Matrix

Figure A.1: Arrival Rate Matrix for Frankfurt Airport. Maximum number of arrivals per
hour in low visibility conditions. Wind speeds given are head wind speeds in FL 30-FL 50
(3000-5000 ft). RWY07/RWY25 is the parallel runway system, RWY07: landing direction
70∘, RWY25: landing direction 250∘ (kindly provided by FRAPORT).
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Appendix B

Model Background Information

B.1 Regression Trees – 24h-Data

Table B.1: Special regression trees used for enhanced punctuality models (24h predictor
resolution), ordered after column ”rank coeff.” (for a definition see Section 3.2.12.2). The
second column gives the data selection rule for construction and application of the special
tree. The fourth column gives the average TOTP on the ”cases” (third column) event
days.

tree weather criterium cases ∅TOTP rank coeff.

1 h mean<30m 3 0.39 61.33
2 VV mean<2000m 5 0.45 33.12
3 SH max>8 cm 14 0.45 27.71
4 Wt b2 mean/Wt N mean>5m/s 20 0.52 26.43
5 ww31b>0 & max wind gt35>0 13 0.53 21.69
6 fx24 max>25m/s 4 0.58 21.00
7 Ws a mean/Ws PB mean>5m/s 29 0.56 16.86
8 VV min<300m & max wind gt35>0 3 0.60 13.33
9 ff mean>7m/s & max wind>25m/s 27 0.59 12.07
10 VV min<300m & h min<30m 20 0.58 10.46
11 ww36b>0 & TT mean<0∘C 8 0.60 10.03
12 VV min<300m 21 0.59 9.78
13 ww34b>0 & TT mean<0∘C 98 0.62 9.73
14 r1 mean>45min 19 0.65 9.10
15 ff mean>7m/s 60 0.63 8.00
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B.2 Regression Trees – 6h-Data

Table B.2: Special regression trees used for enhanced punctuality models (6h predictor
resolution), ordered after column ”rank coeff.” (for a definition see Section 3.2.12.2). The
second column gives the data selection rule for construction and application of the special
tree. The fourth column gives the average TOTP on the ”cases” (third column) event
days.

tree weather criterium cases ∅TOTP rank coeff.

1 ww31b 4>0 & max wind gt35 4>0 1 0.20 80.00
2 max Tangentialwind a head gt35 2>0 2 0.32 68.00
3 h mean<30m 3 0.39 61.33
4 ww31b 2>0 & max wind gt35 2>0 2 0.41 59.50
5 SH MAX 4>8 cm 11 0.42 37.02
6 VV MEAN 3<2000m 7 0.42 33.31
7 VV mean<2000m 5 0.45 33.12
8 h MEAN 3<30m 5 0.46 32.40
9 ww31b 1>0 & max wind gt35 1>0 2 0.42 29.25
10 E2 3>0 2 0.42 29.00
11 VV MEAN 2<2000m 22 0.47 28.76
12 Wt b2 MEAN 1/Wt N MEAN 1>5m/s 16 0.49 28.44
13 SH MAX 3>8 cm 12 0.44 27.92
14 SH max>8 cm 14 0.45 27.71
15 Wt b2 mean/Wt N mean>5m/s 20 0.52 26.43
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Table B.3: Quality criteria for all model stages M1-M13. Figures for Model 5 are for the log-enhanced model using the 5-year
calibration period. Enhancements in models labelled with ’*’ did not prove to be efficient and are not considered for later models.
Results shown for Model 12 are for a high resolution model with regression tree correction and AR component. The Forecast Model,
taking into account an AR component and predictors related to upper level wind, is labelled ’FM’.

M1 M2 M3∗ M4 M5 M6 M7 M8 M9 M10∗ M11 M12 M13 FM

MAE
diag 0.066 0.065 0.065 0.063 0.062 0.058 0.057 0.053 0.052 0.053 0.049 0.048 0.049 0.054
prog 0.081 0.081 0.080 0.077 0.074 0.069 0.070 0.067 0.066 0.065 0.063 0.063 0.063 0.064

RMSE
diag 0.092 0.090 0.090 0.088 0.086 0.080 0.079 0.074 0.073 0.073 0.068 0.068 0.068 0.078
prog 0.115 0.115 0.114 0.111 0.105 0.095 0.069 0.092 0.090 0.091 0.088 0.088 0.087 0.088

SE
diag 0.093 0.091 0.090 0.089 0.087 0.081 0.080 0.074 0.073 0.073 0.069 0.068 0.069 0.078
prog 0.118 0.118 0.117 0.114 0.108 0.097 0.099 0.095 0.093 0.094 0.090 0.090 0.089 0.090

rmultiple
diag 0.604 0.628 0.631 0.648 0.666 0.072 0.728 0.768 0.777 0.778 0.807 0.810 0.807 0.761
prog 0.610 0.629 0.624 0.653 0.667 0.719 0.706 0.735 0.748 0.744 0.766 0.766 0.768 0.766

R2 diag 0.365 0.394 0.398 0.420 0.443 0.519 0.530 0.590 0.604 0.606 0.652 0.656 0.651 0.579
prog 0.372 0.396 0.389 0.426 0.445 0.517 0.499 0.541 0.559 0.554 0.587 0.587 0.590 0.586

R2
adj

diag 0.358 0.387 0.392 0.414 0.437 0.514 0.525 0.585 0.599 0.601 0.648 0.652 0.648 0.573
prog / / / / / / / / / / / / / /
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Appendix C

Forecast Model

C.1 Monthly Plots

In the following, monthly time series of TOTP, TOTPF and the model error
are shown for the validation year 2006. The underlying model is the high
resolution Forecast Model including predictors related to upper level wind as
introduced in Section 3.3. The calibration period is 2003-2005.

03.01. 08.01. 13.01. 18.01. 23.01. 28.01.

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

   
   

   
   

   
   

   
   

   
   

 T
O

T
P

, T
O

T
P F

,A
R

1

 

 

M
od

el
 E

rr
or

TOTP
TOTP

F,AR1

Figure C.1: Time series of TOTP, TOTPF and the model error for the Forecast Model,
January 2006. Dashed lines give twice the standard deviation of TOTP.
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Figure C.2: Time series of TOTP, TOTPF and the model error for the Forecast Model,
February 2006. Dashed lines give twice the standard deviation of TOTP.
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Figure C.3: Time series of TOTP, TOTPF and the model error for the Forecast Model,
March 2006. Dashed lines give twice the standard deviation of TOTP.
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Figure C.4: Time series of TOTP, TOTPF and the model error for the Forecast Model,
April 2006. Dashed lines give twice the standard deviation of TOTP.
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Figure C.5: Time series of TOTP, TOTPF and the model error for the Forecast Model,
May 2006. Dashed lines give twice the standard deviation of TOTP.
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Figure C.6: Time series of TOTP, TOTPF and the model error for the Forecast Model,
June 2006. Dashed lines give twice the standard deviation of TOTP.
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Figure C.7: Time series of TOTP, TOTPF and the model error for the Forecast Model,
July 2006. Dashed lines give twice the standard deviation of TOTP.
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Figure C.8: Time series of TOTP, TOTPF and the model error for the Forecast Model,
August 2006. Dashed lines give twice the standard deviation of TOTP.
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Figure C.9: Time series of TOTP, TOTPF and the model error for the Forecast Model,
September 2006. Dashed lines give twice the standard deviation of TOTP.
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Figure C.10: Time series of TOTP, TOTPF and the model error for the Forecast Model,
October 2006. Dashed lines give twice the standard deviation of TOTP.
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Figure C.11: Time series of TOTP, TOTPF and the model error for the Forecast Model,
November 2006. Dashed lines give twice the standard deviation of TOTP.
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Figure C.12: Time series of TOTP, TOTPF and the model error for the Forecast Model,
December 2006. Dashed lines give twice the standard deviation of TOTP.
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Appendix D

SYNOP Format

D.1 ww-Encoding

00 clear skies
01 clouds dissolving
02 state of sky unchanged
03 clouds developing

Haze, smoke, dust or sand

04 visibility reduced by smoke
05 haze
06 widespread dust in suspension not raised by wind
07 dust or sand raised by wind
08 well developed dust or sand whirls
09 dust or sand storm within sight but not at station

Non-precipitation events

10 mist
11 patches of shallow fog
12 continuous shallow fog
13 lightning visible, no thunder heard
14 precipitation within sight but not hitting ground
15 distant precipitation but not falling at station
16 nearby precipitation but not falling at station
17 thunderstorm but no precipitation falling at station
18 squalls within sight but no precipitation falling at station
19 funnel clouds within sight
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Precipitation within past hour but not at observation time

20 drizzle
21 rain
22 snow
23 rain and snow
24 freezing rain
25 rain showers
26 snow showers
27 hail showers
28 fog
29 thunderstorms

Duststorm, sandstorm, drifting or blowing snow

30 slight to moderate duststorm, decreasing in intensity
31 slight to moderate duststorm, no change
32 slight to moderate duststorm, increasing in intensity
33 severe duststorm, decreasing in intensity
34 severe duststorm, no change
35 severe duststorm, increasing in intensity
36 slight to moderate drifting snow, below eye level
37 heavy drifting snow, below eye level
38 slight to moderate drifting snow, above eye level
39 heavy drifting snow, above eye level

Fog or ice fog

40 Fog at a distance
41 patches of fog
42 fog, sky visible, thinning
43 fog, sky not visible, thinning
44 fog, sky visible, no change
45 fog, sky not visible, no change
46 fog, sky visible, becoming thicker
47 fog, sky not visible, becoming thicker
48 fog, depositing rime, sky visible
49 fog, depositing rime, sky not visible

Drizzle

50 intermittent light drizzle
51 continuous light drizzle
52 intermittent moderate drizzle
53 continuous moderate drizzle
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54 intermittent heavy drizzle
55 continuous heavy drizzle
56 light freezing drizzle
57 moderate to heavy freezing drizzle
58 light drizzle and rain
59 moderate to heavy drizzle and rain

Rain

60 intermittent light rain
61 continuous light rain
62 intermittent moderate rain
63 continuous moderate rain
64 intermittent heavy rain
65 continuous heavy rain
66 light freezing rain
67 moderate to heavy freezing rain
68 light rain and snow
69 moderate to heavy rain and snow

Snow

70 intermittent light snow
71 continuous light snow
72 intermittent moderate snow
73 continuous moderate snow
74 intermittent heavy snow
75 continuous heavy snow
76 diamond dust
77 snow grains
78 snow crystals
79 ice pellets

Showers

80 light rain showers
81 moderate to heavy rain showers
82 violent rain showers
83 light rain and snow showers
84 moderate to heavy rain and snow showers
85 light snow showers
86 moderate to heavy snow showers
87 light snow/ice pellet showers
88 moderate to heavy snow/ice pellet showers
89 light hail showers
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90 moderate to heavy hail showers

Thunderstorms

91 thunderstorm in past hour, currently only light rain
92 thunderstorm in past hour, currently only moderate to heavy rain
93 thunderstorm in past hour, currently only light snow or rain/snow mix
94 thunderstorm in past hour, currently only moderate to heavy snow or

rain/snow mix
95 light to moderate thunderstorm
96 light to moderate thunderstorm with hail
97 heavy thunderstorm
98 heavy thunderstorm with duststorm
99 heavy thunderstorm with hail

Adopted from UNISYS (2009).

D.2 CL-Encoding

0 no low clouds
1 cumulus humulis or fractus (no vertical development)
2 cumulus mediocris or congestus (moderate vertical development)
3 cumulonimbus calvus (no outlines nor anvil)
4 stratocumulus cumulogenitus (formed by spreading of cumulus)
5 stratocumulus
6 stratus nebulosus (continuous sheet)
7 stratus or cumulus fractus (bad weather)
8 cumulus and stratocumulus (multilevel)
9 cumulonimbus with anvil
/ low clouds unobserved due to darkness or obscuration

Adopted from UNISYS (2009).

D.3 E-Encoding

0 ground dry (no cracks or appreciable amounts of dust/loose sand)
1 ground moist
2 ground wet (standing water in small or large pools on surface)
3 flooded
4 ground frozen
5 glaze on ground
6 loose dry dust or sand not covering ground completely
7 thin cover of loose dry dust or sand covering ground completely
8 mod/thick cover of loose dry dust/sand covering ground completely
9 extremely dry with cracks

Adopted from BADC (2009).
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Standard IATA Delay Codes

Others

00-05 AIRLINE INTERNAL CODES
06 (OA) NO GATE/STAND AVAILABILITY DUE TO OWN

AIRLINE ACTIVITY
09 (SG) SCHEDULED GROUND TIME LESS THAN DECLARED

MINIMUM GROUND TIME

Passenger and Baggage

11 (PD) LATE CHECK-IN, acceptance after deadline
12 (PL) LATE CHECK-IN, congestions in check-in area
13 (PE) CHECK-IN ERROR, passenger and baggage
14 (PO) OVERSALES, booking error
15 (PH) BOARDING, discrepancies and paging, missing checked-in

passenger
16 (PS) COMMERCIAL PUBLICITY/PASSENGER CONVENIENCE,

VIP, press, ground meals and missing personal
17 (PC) CATERING ORDER, late or incorrect order given to supplier
18 (PB) BAGGAGE PROCESSING, sorting etc.

Cargo and Mail

21 (CD) DOCUMENTATION, errors etc.
22 (CP) LATE POSITIONING
23 (CC) LATE ACCEPTANCE
24 (CI) INADEQUATE PACKING
25 (CO) OVERSALES, booking errors
26 (CU) LATE PREPARATION IN WAREHOUSE
27 (CE) DOCUMENTATION, PACKING etc. (mail only)
28 (CL) LATE POSITIONING (mail only)
29 (CA) LATE ACCEPTANCE (mail only)
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Aircraft and Ramp Handling

31 (GD) AIRCRAFT DOCUMENTATION LATE/INACCURATE, weight
and balance, general declaration, pax manifest, etc.

32 (GL) LOADING/UNLOADING, bulky, special load, cabin load, lack
of loading staff

33 (GE) LOADING EQUIPMENT, lack of or breakdown, e.g. container
pallet loader lack of staff

34 (GS) SERVICING EQUIPMENT, lack of or breakdown, lack of staff,
e.g. steps

35 (GC) AIRCRAFT CLEANING
36 (GF) FUELLING/DEFUELLING, fuel supplier
37 (GB) CATERING, late delivery or loading
38 (GU) ULD, lack of or serviceability
39 (GT) TECHNICAL EQUIPMENT, lack of or breakdown, lack of staff,

e.g. pushback

Technical and Aircraft Equipment

41 (TD) AIRCRAFT DEFECTS
42 (TM) SCHEDULED MAINTENANCE, late release
43 (TN) NON-SCHEDULED MAINTENANCE, special checks and/or

additional works beyond normal maintenance schedule
44 (TS) SPARES AND MAINTENANCE EQUIPMENT, lack of or

breakdown
45 (TA) AOG SPARES, to be carried to another station
46 (TC) AIRCRAFT CHANGE, for technical reason
47 (TL) STAND-BY AIRCRAFT, lack of planned stand-by aircraft for

technical reasons
48 (TV) SCHEDULED CABIN CONFIGURATION/VERSION

ADJUSTMENTS

Damage to Aircraft & EDP/Automated Equipment Failure

51 (DF) DAMAGE DURING FLIGHT OPERATIONS, bird or lightning
strike, turbulence, heavy or overweight landing, collision
during taxiing

52 (DG) DAMAGE DURING GROUND OPERATIONS, collisions (other
than during taxiing), loading/off-loading damage, contamination,
towing, extreme weather conditions

55 (ED) DEPARTURE CONTROL
56 (EC) CARGO PREPARATION/DOCUMENTATION
57 (EF) FLIGHT PLANS
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Flight Operations and Crewing

61 (FP) FLIGHT PLAN, late completion or change of, flight
documentation

62 (FF) OPERATIONAL REQUIREMENTS, fuel, load alteration
63 (FT) LATE CREW BOARDING OR DEPARTURE PROCEDURES,

other than connection and standby (flight deck or entire crew)
64 (FS) FLIGHT DECK CREW SHORTAGE, sickness, awaiting

standby, flight time limitations, crew meals, valid visa, health
documents, etc.

65 (FR) FLIGHT DECK CREW SPECIAL REQUEST, not within
operational requirements

66 (FL) LATE CABIN CREW BOARDING OR DEPARTURE
PROCEDURES, other than connection and standby

67 (FC) CABIN CREW SHORTAGE, sickness, awaiting standby, flight
time limitations, crew meals, valid visa, health documents, etc.

68 (FA) CABIN CREW ERROR OR SPECIAL REQUEST, not within
operational requirements

69 (FB) CAPTAIN REQUEST FOR SECURITY CHECK, extraordinary

Weather

71 (WO) DEPARTURE STATION
72 (WT) DESTINATION STATION
73 (WR) EN ROUTE OR ALTERNATE
75 (WI) DE-ICING OF AIRCRAFT, removal of ice and/or snow, frost

prevention excluding unserviceability of equipment
76 (WS) REMOVAL OF SNOW, ICE, WATER AND SAND FROM

AIRPORT
77 (WG) GROUND HANDLING IMPAIRED BY ADVERSE WEATHER

CONDITIONS

Air Traffic Flow Management Restrictions

81 (AT) ATFM DUE TO ATC EN-ROUTE DEMAND/CAPACITY,
standard demand/capacity problems

82 (AX) ATFM DUE TO ATC STAFF/EQUIPMENT EN-ROUTE,
reduced capacity caused by industrial action or staff shortage,
equipment failure, military exercise or extraordinary demand
due to capacity reduction in neighbouring area

83 (AE) ATFM DUE TO RESTRICTION AT DESTINATION
AIRPORT, airport and/or runway closed due to obstruction,
industrial action, staff shortage, political unrest, noise abatement,
night curfew, special flights

84 (AW) ATFM DUE TO WEATHER AT DESTINATION
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Airport and Governmental Authorities

85 (AS) MANDATORY SECURITY
86 (AG) IMMIGRATION, CUSTOMS, HEALTH
87 (AF) AIRPORT FACILITIES, parking stands, ramp congestion,

lightning, buildings, gate limitations, etc.
88 (AD) RESTRICTIONS AT AIRPORT OF DESTINATION, airport

and/or runway closed due to obstruction, industrial action, staff
shortage, political unrest, noise abatement, night curfew, special
flights

89 (AM) RESTRICTIONS AT AIRPORT OF DEPARTURE WITH OR
WITHOUT ATFM RESTRICTIONS, including Air Traffic
Services, start-up and pushback, airport and/or runway closed
due to obstruction or weather, industrial action, staff shortage,
political unrest, noise abatement, night curfew, special flights

Reactionary

91 (RL) LOAD CONNECTION, awaiting load from another flight
92 (RT) THROUGH CHECK-IN ERROR, passenger and baggage
93 (RA) AIRCRAFT ROTATION, late arrival of aircraft from another

flight or previous sector
94 (RS) CABIN CREW ROTATION, awaiting cabin crew from another

flight
95 (RC) CREW ROTATION, awaiting crew from another flight (flight

deck or entire crew)
96 (RO) OPERATIONS CONTROL, re-routing, diversion, consolidation,

aircraft change for reasons other than technical

Miscellaneous

97 (MI) INDUSTRIAL ACTION WITH OWN AIRLINE
98 (MO) INDUSTRIAL ACTION OUTSIDE OWN AIRLINE, excluding

ATS
99 (MX) OTHER REASON, not matching any code above

Adopted from Guest (2007).
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bericht 2006, URL http://www.fraport.de/cms/investor_relations/

dokbin/235/235213.geschaeftsbericht_2006.pdf, cited 2009 Feb 23.

FRAPORT, 2007: Optimum Capacity Utilization, CAPMAN – Capacity
Manager, published in the internet, URL http://www.fraport.com/cms/

company/rubrik/12/12774.innovation_projects.htm, cited 2009 May
14.

Frey, W., 2006: Investigation of type-specific errors in AMDAR weather
reports of commercial aircraft, Diplomarbeit, Gottfried Wilhelm Leibniz
Universität Hannover, Institut für Meteorologie und Klimatologie.

Garson, D., 2009: Multiple Regression, published in the inter-
net, URL http://faculty.chass.ncsu.edu/garson/PA765/regress.

htm, cited 2009 Apr 22.

Guest, T., 2007: A Matter of Time: Air Traffic Delay in Europe, Trends
in Air Traffic, EUROCONTROL.



138 BIBLIOGRAPHY

Hansen, M. and T. Bolic, 2001: Delay and Flight Time Normalization
Procedures for Major Airports: LAX Case Study, NEXTOR Research Re-
port UCB-ITS-RR-2001-5, Institute of Transportation Studies, University
of California at Berkeley.

Hansen, M. M. andW. Wei, 1999: Multivariate Analysis of the Impacts of
NAS Investments: A Case Study of a Major Capacity Expansion at Dallas-
Forth Worth Airport, Research Report UCB-ITS-RR-98-11, Institute of
Transportation Studies, University of California at Berkeley.

Heinemann, H.-J., 2008: Eine Winterchronik: Die Kälte der Winter in
Deutschland von 1960/61 bis 2007/08, Berichte des Deutschen Wetter-
dienstes, (232), p. 62.

Hipel, K. W. and A. I. McLeod, 1994: Time Series Modelling of Wa-
ter Resources and Environmental Systems, volume 45 of Developments in
Water Science, Elsevier, 1st edition, 1013 pp.

Hoffmann, B., J. Krozel and R. Jakobavits, 2004: Potential bene-
fits of fix-based ground delay programs to address weather constraints, in
AIAA Guidance, Navigation, and Control Conf., Providence, Ri, American
Institute of Aeronautics and Astronautics, p. 13.

ICAO, 1993: Airport Services Manual, Part 2, Pavement Surface Conditions,
Technical report, ICAO, 2nd edition.

ITA, 2000: Costs of air transport delay in europe, Final report, Institut
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